
 
MODELING PRECIPITATION-RUNOFF RELATIONSHIPS TO 

DETERMINE WATER YIELD  

FROM A PONDEROSA PINE FOREST WATERSHED 

 
 

By Assefa S. Desta 
 

 

A Thesis 

Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Science 

in Forestry 

Northern Arizona University 

August 2006 

 

Approved: 

__________________________________ 

Aregai Tecle, PhD., Chair 

__________________________________ 

Daniel Neary, Ph.D.,  

__________________________________ 

Alex Finkral, Ph.D. 

 



 II 
 

ABSTRACT 

MODELING PRECIPITATION-RUNOFF RELATIONSHIPS TO DETERMINE 

WATER YIELD FROM ARIZONA�S PONDEROSA PINE FORESTS 

 
ASSEFA S. DESTA 

 
 

A stochastic precipitation-runoff modeling is used to estimate a cold and warm- 

seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. 

The model consists of two parts namely, simulation of the temporal and spatial distribution 

of precipitation using a stochastic, event-based approach and estimation of water yield from 

the watershed using deterministic and spatially varied water balance technique.  In the first 

part, a selected group of theoretical probability distribution functions are used to describe the 

probability distribution of the various precipitation characteristics, such as storm depth, 

storm duration, and interarrival time between events. Then, a synthetic data of each 

precipitation characteristic are generated using the best distribution function that fit the 

observed data. The other precipitation characteristics evaluated in this part is the spatial 

distribution of precipitation. The distribution of storm depth and duration across the 

watershed with respect to the landscape characteristics such as latitude, longitude, elevation 

and aspect is studied. In addition, the form of precipitation, snow or snow during the cold-

season is analyzed by simulating temperature. Overall the models for two seasons work well 

except that the cold-season model overestimate precipitation events of small depth and 

duration while, the warm-season model overestimate the total seasonal amount.  

  The generated precipitation events in the first part are used as an input in 

precipitation-runoff relationship model, discussed in the second part of this study. 
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Geographical information system (GIS) is used to describe the spatial characteristics and 

subdivided the watershed into cells of 90m by 90m size assumed to be homogeneous with 

respect to elevation, aspect, slope, overstory density and soil type. Water yield is estimated 

at a cell level using a water balance approach that incorporates the hydrologic processes 

such as canopy interception, evaporation, transpiration, infiltration, snow accumulation and 

melt. The estimated runoff from the cells, is, then routed from cell to cell in a cascading 

fashion in the direction of flow. The total water yield is the accumulated surface runoff 

generated at the watershed outlet. Finally the estimated water yield is compared with the 

observed stream flow data to test the reliability of the model. The results showed that the 

simulated water yield is similar to the water yield of previous research but lower that the 

observed data.  
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Chapter 1 

 General Introduction  

 
The mixed conifer forests located in the higher-elevation watersheds of north central 

Arizona have been recognized as important sources of water for the fast growing population 

in the Phoenix metropolitan area and the other communities in the Salt and Verde River 

Valley of Arizona (Baker and Ffolliott, 1999). The area has four seasons consisting of wet 

winter and summer and relatively dry fall and spring. Winter precipitation often comes in 

the form of snow resulting from frontal storms moving to the region from the Pacific 

Northwest. Summer storms are primarily of convective type produced from moistures 

that originate in the Gulf of Mexico (Sellers et al., 1985).  

Snowmelt from winter precipitation has been considered as the primary source of 

the annual water yield in the area. Because of this, previous research efforts in north 

central Arizona had focused only on winter precipitation to estimate annual water yield 

without any consideration to contribution from summer thunderstorms (Fogel et al., 

1971). This is in spite of the fact that intensive thunderstorms occasionally generating 

significantly large downstream flows. 

  Accurate precipitation data only exist at point locations, where the gauging stations 

are located. Hence, precipitation data measured at one gauging station in the watershed may 

not represent the precipitation falling on the entire watershed because the distributions of 

depth and duration of precipitation vary with space along the watershed landscape 

(Marquinez et al., 2003). This variation in spatial distribution of precipitation affects the 

total amount of water yield from the watershed. The proposed conceptual models are a 

stochastic, event-based, and spatially varied precipitation model and a deterministic water 
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yield model. In the stochastic event-based model of precipitation, synthetic precipitation 

data are generated and used as an input in the water yield model. 

 

Objectives 

This research focuses on developing an appropriate conceptual model to estimate the 

amounts of cold and warm-seasons water yields from the ponderosa pine watersheds of 

Arizona.  

There are three main objectives of this study: 

 1. To develop conceptual event-based, stochastic models to describe and simulate temporal 

distribution of cold and warm-seasons precipitation falling in the ponderosa pine forested 

watersheds in north central Arizona.   

2. To study the spatial distribution of precipitation along the ponderosa pine watershed 

3. To develop conceptual cold and warm-seasons precipitation-runoff algorithms that take 

into account the temporal and spatial distribution of precipitation and other important 

watershed characteristics, such as elevation, slope, aspect, soil structure and texture, 

overstory vegetation cover and various climatic data.  

 

Temporal Distribution of Precipitation 

 A stochastic approach is used to estimate the occurrence likelihood of a random 

phenomenon such as a hydrological event (Bonta, 2004). The stochastic approach is 

selected to account for the inherently uncertain characteristics of precipitation and its 

ability to provide a better forecast of future scenarios. Knowledge of the probability of 
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the occurrence of a certain precipitation or hydrologic magnitude is useful in water 

resource management decision making (Tecle and Rupp, 2002).  

 The reason for developing event-based models is that, cold and warm-seasons 

water yields are hypothesized to be dependent on inter-arrival time, depth and duration of 

precipitation events. Cold-season precipitation, in addition to the above factors, depends on 

the form in which precipitation comes, and the characteristics of snowpack. For example, a 

spring rainfall storm falling on an existing snowpack is expected to produce more runoff 

than an early winter snowfall even though the amounts of water equivalents of the two 

events are similar. This occurs due to higher amounts of water losses from evaporation and 

sublimation occurring during the early cold season snowpack period.  An event-based model 

can account for variations in water yield caused by different combinations of storm 

interarrival time, depths and durations, as well as the form of precipitation, and evaporation 

and snowmelt. 

 The temporal component is a stochastic simulator of storm event depth, duration and 

inter-arrival time between events. In the case of winter precipitation, events occurring within 

a few days of each other are said to be part of the same storm sequence, as they are related to 

a large-scale weather system. Under this condition, two additional variables are needed to 

adequately describe the precipitation characteristics in the area: inter-arrival time between 

sequences and the number of events occurring in a sequence. Univariate distribution 

functions are fit to the frequency distributions of the interarrival time between events, 

number of events per sequence and interarrival time between sequences. However, a 

bivariate probability density function is fit to the depth-duration data to reflect their 
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interdependence. A random number generator is used to aid the synthetic generation of 

future events on the basis of the selected theoretical distributions. 

 

Spatial Distribution of Precipitation  

  The spatial component of the precipitation model estimates the precipitation amount 

at any point on the watershed. Data from the network of precipitation gauges in the 

Beaver Creek watershed are used to create a regression equation that allow predicting the 

precipitation amount at any point given the location�s elevation, latitude, longitude and 

aspect. A GIS software is used to generate raster, or grid, surfaces of both depth and 

duration of a precipitation event. And a third grid of average event intensity is created 

from a combination of the depth and duration surfaces. The information generated in the 

precipitation model is then used as one of the inputs into the deterministic water yield 

model.  

  To better estimate the water yield from the watershed, the effects of spatial 

distribution of watershed characteristics on runoff are analyzed using Geographical 

Information Systems (GIS). This makes it possible to describe the spatial data in a high-

resolution. Variables important to determine runoff such as precipitation, temperature, 

elevation, slope, aspect, vegetation cover, and soil type will not be averaged over a 

watershed area has been done in many studies.   

 

Water Yield 

    The watershed is sub-divided into cells of 90 by 90 m size using GIS. The various 

watershed characteristics that affect the amount of runoff, for each cell, including 
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elevation, aspect, slope, vegetation cover and soil type as well as the dynamic climatic 

variables of solar radiation, relative humidity were studied. A water balance that consists 

of hydrologic inputs and outputs is constructed to estimate the runoff existing in each cell. 

The inputs and outputs are computed using a selected set of mathematical equations. The 

runoff from each cell is routed downstream from one cell to another in a cascading 

fashion to determine the total amount of water yield at the outlet of the watershed. The 

individual cold and warm-seasons runoff events are then temporally and spatially 

cumulated to determine the seasonal amount of water yield from the entire watershed. In 

the end, the annual water yield will be determined by summing up the seasonal water 

yields. 

 

Study Area 

            This study uses Bar M watershed as a case study for developing a water yield 

model. With an area of 6,678 ha, the watershed is the largest of the Beaver Creek 

experimental watersheds. The Beaver Creek experimental watersheds, which encompass 

111,289 ha, are a group of watersheds located within the Coconino National Forest in 

central Arizona. This project was one of Arizona�s watershed programs, initiated by the 

USDA Forest Service as pilot study in 1957. The Beaver Creek watersheds were selected 

for research because they contain extensive areas of ponderosa pine and pinyon-juniper 

woodlands. The main objective of the project was to test the effects of vegetation 

management practices on water yield and forage production. Later in 1971, the objectives 

of the project shifted towards developing and testing the responses of natural resources 
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from disturbances and developing a multiple use management models (Baker Jr. and 

Brown, 1974). 

               Based on different research and practical experiences heavy vegetation are 

generally associated with relatively comparatively low water yields. On the other hand, 

practices which reduce vegetation density tend to increase water yields, and practices 

which favor heavy vegetation density tend to minimize water yield (Barr, 1956). In the 

Beaver Creek watersheds, various vegetation manipulation treatments including clear 

cutting, uniform strip cutting, irregular strip cutting, and thinning. Similarly, the effects 

of these vegetation treatments on water yield, sediment, forage production, timber 

production, wildlife, and recreation values were studied (Baker, 1999).  

             The study consisted of 20 watersheds in which 14 of them were experimental 

watersheds, treated with different levels of vegetation treatments while the other six were 

designed as control watersheds and left untreated. The Bar M watershed was one of the 

control watersheds covered by ponderosa pine forest (See Figure 1-1). The outlet of the 

Bar M watershed lies at 111o 36' 19" W longitude and 34o 51' 40" N latitude and has an 

elevation of 1,930 m. The highest point of the watershed rises to an elevation of 2,324 m. 

The watershed is generally inclined to the southwest and has an average slope of 12 

degrees. Eighty percent of the watershed is covered by ponderosa pine (Pinus ponderosa). 

The remaining 12 and 3 percent of the watershed are covered by gambel oak (Quercus 

gambelii) and aspen (Populus tremuloides), respectively. The main grass species in the 

watershed are: Arizona fescue (Festuca arizonica), mountain muhly (Muhlenbergia 

palmeri), blue grama (Bouteloua gracilis), and squirrel tail (Elymus elymoides) 

(Anderson et al., 1960)  
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Volcanic parent material covers the Beaver Creek area with thickness that start at 

zero in the lower elevations to an estimated 305 m thickness near some of the cinder 

cones in the area. The average thickness is believed to be approximately 152 m based on the 

projected position of the erosion surface of the Kaibab formation on which the volcanic 

material was deposited (Baker, 1982). The sedimentary rocks below the volcanic cover are 

porous and permeable because of their origin and the abundant fracture systems 

developed in them (Baker, 1982). The volcanic material resulted from a serious of lava flow 

deposits. Each deposit has its own distinct set of vertical contraction joints, which do not 

penetrate from one layer of deposit to the next (Rupp, 1995). These joints are the primary 

passage ways for the downward movement transport of surface water that enters into the 

relatively impervious lava rock formation. Since the vertical fractures do not extend to the 

adjacent deposits, the entry of large amounts of water to the sedimentary rock below is 

generally inhibited (Rush, 1965). Only two percent of the total precipitation that falls on the 

Mogollon Rim, which cuts through the Beaver Creek watershed, reaches the aquifers in the 

sedimentary rock formation (Rupp, 1995). Baker (1982) found that, in the Beaver Creek 

area, water passes to the sedimentary layer only in two out of the twenty experimental 

watersheds.  

The predominant soils in the ponderosa pine forested watersheds are Eutroboralfs 

and Argiborolls of the Brollier (loam to fine clay), Siesta (silt loam), and Sponseller 

series (stony silt loam), and are developed on basalt and Cinders (Williams and 

Anderson, 1967; Campbell and Ryan, 1982). The average depth of these soils is less than 

one meter and predominantly the soils have low permeability. For over 90 percent of the 

soils in the ponderosa pine type, the infiltration rate ranges from 20 to 64 mm/hr, the 
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permeability rate varies from one to five mm/hr and the soil water storage capacity is 

between 152 to 457 mm. The other ten percent of the soils in the ponderosa pine type 

have similar permeability and infiltration rates, but have water storage capacities greater 

than 457 mm (Williams and Anderson, 1967).   

The Beaver Creek area receives precipitation during two periods of the year 

namely the cold season, which runs roughly from October to April and the warm season 

from May to September. The frontal cold season precipitation results from large cyclonic 

storms that originate in the northern Pacific Ocean while the convective, short lived 

summer precipitation comes from the Gulf of Mexico (Bescheta, 1976). On average the 

area receives 431 mm of precipitation during the cold season in the form of snow 

whereas 216 mm of precipitation falls during summer season. Baker (1982) found that 22 

percent of the annual precipitation converts to surface runoff. Ninety seven percent of the 

annual runoff produced from snow melts during the cold season. The underlayng rock 

formation allows very little water to seep down and reach the regional water table, which 

lies 305 to 610 m below the surface (Rush , 1965). Estimate of the evapotranspiration 

value for the area have been made by subtracting the measured runoff from the 

precipitation. According to Baker (1982), on the average about 500 mm of water is lost to 

the atmosphere through evapotranspiration annually. 

  Cold-season temperature in the ponderosa pine forest part of the Beaver Creek 

averages 1.3 0 C, with a low monthly mean of -2.2 0 C in January to 7.20 C (Campbell and 

Ryan, 1982). The diurnal temperature fluctuation, or the difference between the daily 
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maximum and daily minimum temperatures average about 170 C during the cold season 

(Beschta, 1976; Campbell and Ryan, 1982). 

 

 

 

                                                  
 
 
 
 
 
 

 
 
 
Figure 1-1. Location of Mar M watershed in the former Beaver Creek experimental 
watershed.  
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      Chapter 2  

Stochastic Event-based and Spatial Modeling of Precipitation 

                                                                      Abstract 

 The temporal and spatial distributions of precipitation for cold and warm-seasons are 

studied in a particular watershed in the ponderosa pine forest type located in Beaver Creek 

area in north-central Arizona 42 km South of Flagstaff. A stochastic, event-base technique is 

used to simulate the temporal pattern of precipitation. The technique, first, requires 

selecting appropriate theoretical distribution functions to describe the probability 

distribution of precipitation characteristics such as storm event depth, event duration and 

inter-arrival time between events. Then, it involves generation of random numbers using 

the selected theoretical distribution functions to synthetically simulate each precipitation 

characteristic.  Weibull and gamma probability distribution functions are the best models 

used to describe the variables for both seasons. The results indicate that the cold-season 

precipitation model over-estimates the small-depth precipitation events while the warm-

season precipitation model over-estimates the total average seasonal amount of 

precipitation. The spatial distribution of precipitation in the area is highly influenced by 

orographic, and seasonal and local climatic conditions. The results are displayed using a 

geographical information system (GIS) format. Some landscape characteristics such as 

elevation, latitude, longitude, and aspect are also considered to have important effects on the 

spatial distribution of precipitation. The cold-season precipitation events are highly 

influenced by latitude while warm-season precipitation events are mostly affected by the 

longitude and elevation of the areas. Therefore, more northerly (higher latitude) areas 

receive larger amounts of cold-season precipitation while, more easterly located areas 

(higher longitude) with higher elevation receive larger amounts of warm-season 
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precipitation. In addition, the form of cold-season precipitation, rain or snow, is 

dependent upon ambient temperature, which varies with time and space.   

 

Introduction 

  Precipitation is governed by physical laws and complex atmospheric processes. 

Atmospheric processes that generate precipitation systems are complex and spatially and 

temporally varying, making accurate prediction of precipitation practically difficult. 

Therefore, precipitation is often evaluated statistically as a random process, in which its 

future temporal distribution is studied based on its historical distribution pattern 

(Viessman, Jr. and Lewis, 2003; Rupp, 1995). A stochastic, event based precipitation 

modeling that takes the advantage of GIS technology is developed for both cold and warm-

seasons precipitation in a ponderosa pine forested watersheds in north-central Arizona. This 

chapter focuses on developing a model to generate synthetic precipitation data, to be used as 

an input into the water yield model developed in the next chapter. To be realistic the model 

developed considers both the temporal and spatial characteristics of the precipitation events 

in the study area. 

  The temporal component of this model uses a stochastic process to describe the 

distribution of precipitation characteristics such as inter-arrival time between events, and the 

depth and duration of the individual storm. The procedure uses appropriate theoretical 

probability distribution functions and a random number generator to describe and simulate 

the various precipitation characteristics.  The frequency distribution of the inter-arrival time 

between events is modeled using a univariate Weibull probability distribution function. 

Depth and duration are modeled using a joint bivariate distribution function to account for 

their dependency on each other. Using the selected theoretical distribution functions, 
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random numbers are generated for each precipitation characteristic to simulate a synthetic 

time series of precipitation events. 

   The types of models used depend on the characteristics of the precipitation 

patterns in the cold and warm-seasons in north central Arizona. The cold-season 

precipitation events are typically the result of frontal storms (Sellers et al., 1985) while 

warm-season precipitation events are generally monsoonal type convective storms that 

tend to be highly localized and intensive but short lived lasting from several minutes to a 

few hours ( Fogel and Duckstein,1969; Fogel et al., 1971). The cold-season precipitation, 

however, can have duration of more than one day and individual storms may be related to 

each other by large-scale weather systems. An independent model is used to describe 

warm-season precipitation events, while cold-season precipitation events are described 

using a dependent model with additional parameters to adequately describe their 

characteristics (Duckstein et al., 1975). A test of precipitation models shows that they 

produce the cold and warm-seasons precipitation patterns in the study area reasonably 

well. The relative frequency distribution of twenty-year simulated total seasonal amount 

are compared with the frequency distribution of twenty-year of measured cold and warm-

seasons precipitation events resulting in reasonable correlation. 

The spatial analysis is used to define the areal distribution of precipitation event 

depth and duration, as well as the form of precipitation, rain or snow, over the watershed. 

The event depth and duration at any point on the watershed is described as a function of 

the point�s location in terms of its elevation, aspect, latitude and longitude as well as a 

function of the storm depth and duration simulated at the outlet of the watershed.  
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A GIS is used with the above functions to generate raster, or grid, surfaces of 

event depth and duration. The two grids are combined to form a third surface of 

precipitation intensity. Because the difference in elevation over the watershed ranges over 

421 m, it is possible for storm precipitation to take the form of rain at the lower elevation 

while falling as snow at the higher elevations. Therefore, the daily maximum and 

minimum temperatures, which are used to determine the form of precipitation, are 

described as functions of elevation. A GIS is employed to describe the spatial variability 

of elevation, and thus temperature, across the watershed. In this manner, the form of 

precipitation for any storm event is determined at any point on the watershed. 

 

 Literature Review  

Temporal Distribution of Precipitation 

Precipitation is governed by physical laws and complex atmospheric processes. 

The fact that these processes are complex and spatially and temporally dependent on each 

other, make accurate prediction of precipitation practically difficult (Viessman Jr. and 

Lewis, 2003). The complexity of the processes, however, allows a probabilistic 

description of variables such as rainfall depth, intensity of an event, interarrival time 

between events and statistical analyses of these random variables provide simulation of 

future properties of rainfall events (Smith and Schreiber, 1973). These probabilistic 

models of precipitation consist of a combination of theoretical probability distributions of 

the above mentioned variables and a random number generation to simulate the 

precipitation events (Tecle et al., 1988).  
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There are two types of models used to simulate random processes depending on 

the type of relationship that exist between two sequential events: dependent or 

independent models. Dependent models are used to characterize and simulate random 

processes when the events are related to each other while independent models are used if 

the events are not related to each other. An independent model is used to describe the 

convective, highly intensive, short duration and widely scattered summer thunderstorms 

that show relative independence between any two consecutive rain events. The dependent 

model, on the other hand, is used to describe the frontal-type storms which exhibit strong 

relationship between consecutive rain events (Fogel and Duckstein, 1969;  

Fogel et al., 1971; Duckstein et al., 1975; Tecle et al., 1988).    

 

 Stochastic, Event-based Modeling of Cold-season Precipitation  

Generally, synoptic weather systems determine the amount and frequency of the 

storms occurring during the cold-season in Arizona (Sellers and Hill, 1974). The frontal 

storms associated with these systems tend to result in the occurrence of more than one 

precipitation events in a period of more than one day. The consecutive precipitation 

events resulting from the same synoptic system are not independent from one another, on 

the other hand, the arrivals of the synoptic systems themselves are considered to be 

independent of one another (Duckstein et al., 1975; Hanes et al., 1977; Baker, 1982).  

A stochastic, event-based model that accounts for the independence of synoptic 

systems and the persistence of events within a system was developed by Duckstein et al. 

(1975) and Rupp (1995). Ducksten et al. (1975), in their model, categorized precipitation 

events into �groups� and �sequences� in order to address the persistence of events. They 
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defined an event as an individual wet day in which precipitation amount of 0.25mm or 

more was recorded. Groups were defined as a number of one or more consecutive rain 

events separated by less than three days while sequences are one or more group of events 

separated by more than three days (Rupp, 1995).  

  In the modeling process, data on the various variables describing the different 

precipitation characteristics are generated. The first three variables, which deal with the 

persistence of events, are: the number of groups per sequence, the number of dry days 

between two consecutive groups, and duration of groups. The other two independent 

variables are sequence interarrival time, the time interval between the beginnings of two 

consecutive storm sequences; and the amount of precipitation in each group. Figure 2-1 

shows the five precipitation model variables used by Duckstein et al. (1975).
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Figure 2-1. Winter precipitation model variables as described in Duckstein et al., (1975). 

 

Rupp (1995) modified the model that was developed by Duckstein et al. (1975) in 

order to allow for the simulation of precipitation intensity by considering the amount and 

duration of individual precipitation events. He defined an event as an uninterrupted 

rainfall or snowfall of any duration. He removed �group� from his model but used the 

same definition for a storm sequence except changing the one day time resolution that 

separates two consecutive precipitation events to as little as five minutes. Rupp (1995) 

used 3.5 days as the minimum inter-arrival time between two consecutive storm 
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sequences. The five variables used by Rupp (1995) to simulate a sequence-based model 

are:1) time between sequences (days), 2) number of events per sequence, 3) time between 

events (hours), 4) precipitation amount per event (mm) 5) duration of event (hours).     

  In both studies (Duckstein et al., 1975 and Rupp, 1995) appropriate theoretical 

distribution functions were selected that fit best the distributions of the observed 

precipitation characteristics or model variables. Random numbers were generated in each 

model to simulate the precipitation data. Duckstein et al. (1975) made two important 

assumptions regarding the operation of their model. The first is the independence 

between the amount of precipitation received in a group and the duration of the group. 

Hanse et al. (1977) conducted a test to check this assumption and they found that the two 

variables are not correlated. The second assumption is that precipitation depths are 

uniformly distributed over the duration of the storm group. Hanes et al. (1977) accepted 

this assumption on the basis of �the majority of the winter precipitation that falls as snow 

and rarely melting immediately.� However, due to two reasons, the justification for the 

second assumption is questionable. First, in their study site, the White Mountains of 

Arizona, where the elevations range from 2318 to 2684 m, though most of the winter 

precipitation falls as a snow, there is a significant amount that falls as rain. Second, due 

to the rapid warming of the ambient air, there are occasions in which the snow melts soon 

after it falls on the ground (Rupp, 1995).  

Modeling of interdependent variables such as depth and duration, or intensity and 

duration, of storms using a bivariate distribution was developed in different areas. Bacchi 

et al. (1994) described the joint frequency distribution of the intensities and durations of 

extreme rainfall events in terms of a bivariate distribution function with exponential 
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marginals derived by Gumbel (1960). This bivariate distribution function is applicable for 

a negative correlation coefficient ranging from 0 - 0.404 between the two dependent 

variables. Singh K. and Singh V., (1991) also used a bivariate distribution function with 

exponential marginal to describe a joint frequency distribution of storm intensity and 

duration. Etoh and Murota (1986) developed a general gamma-type bivariate distribution 

function to describe the joint distribution of duration and depth.  

Schmeiser and Lal (1981) reviewed several methods for generating bivariate 

distributions using gamma marginal distributions. Each method has different limits 

imposed on the correlation. They also developed a new method suitable for the entire 

range of possible correlation coefficients. They supplied algorithms that produce a family 

of bivariate gamma distributions from any gamma marginal distributions, correlation 

coefficient, and regression curves describing the conditional expectations E{X1/X2} and 

E{X2/X1}. In addition, Kottas and Lau (1978) discussed a method of simulating with 

bivariate distributions by describing the first random variable in terms of its marginal 

distribution, then defining the conditional distribution of the second variable explicitly. 

Rupp (1995) used a bivariate distribution to describe the precipitation depth and duration 

on a watershed close to our study area. He used two different procedures for generating 

two dependent random variables with gamma marginal distributions. The first procedure 

was trivariate reduction (TVR) method with Cherian�s bivariate gamma distribution 

function (Cherian, 1941). This method first generates three independent random variables 

with gamma distributions, which are then combined and reduced down to two 

independent variables with gamma distributions in this case, duration and depth.  
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Rupp (1995) referred to the second method as �explicit conditional distribution 

(ECD).�  The ECD method, unlike other methods where the conditional distributions 

arise implicitly from bivariate probability distribution function (pdf), the conditional 

distribution is modeled directly. To develop a bivariate model using the ECD method to 

simulate storm depth and duration, one has to first find the marginal distribution of 

duration. Then the conditional distribution of depth will be determined based on the 

marginal distribution of duration. Both the marginal and conditional distributions are 

assumed to be gamma with the shape and scale parameters of depth that are dependent on 

the shape and scale parameters of duration.                                                                               

                            

Stochastic, Event-based Modeling of Warm-season Precipitation 

Unlike cold-season precipitation, warm-season precipitation is caused by 

convective-type systems. Thunderstorm rainfall is recognized to be more variable in time 

and space than other storm types (Fogel et al., 1971). Nearly 36% percent of the annual 

precipitation in north central Arizona occurs as thunderstorms during the summer. 

Although these storms occur frequently, individual storm usually covers relatively small 

areas and have short-duration (Baker, 1982). The spatial and temporal variability of 

summer thunderstorm precipitation events in other parts of Arizona, where summer 

precipitation is dominant, has been simulated using a stochastic event-based approach 

(Fogel and Duckstein, 1969; Fogel et al., 1971; Duckstein. et al., 1972). The same 

method has also been employed in other semi-arid part of the world (Fogel and Duckstein, 

1981; Bogardi et al., 1988). Bogardi et al. (1988) have developed an event-based 

approach to semi-arid climatic conditions in Central Tanzania. In their model, Bogardi et 
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al. (1988) defined a rainfall event as an uninterrupted sequence of rainy days with an 

amount of above a certain threshold value, 5mm d-1, and a dry event as a sequence of dry 

days as observed at a given rain gage. The threshold value is approximately equivalent to 

the expected daily evaporation rate. Precipitation events below this threshold value do not 

produce utilizable surface runoff and were not considered in the model. The variables 

used by Bogardi et al. (1988) to describe this precipitation model were: depth of event, 

duration of events, interarrival time and number of events per season (see Figure 2-2). 

Though the recording of data on a daily basis is, believed to indicate the occurrence and 

amount of total rainfall depth of events adequately, it does not reveal the characteristics 

of individual storms of short duration. 
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Figure 2-2. Summer precipitation model variables (Bogardi et al., 1988). 
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have a sufficient number of gages. The primary objective of the model was to simulate 

seasonal summer storms in order to simulate seasonal runoff. In their model they first 

simulated two variables: number of events per season and depth of point rainfall and then 

they simulated the total depth of precipitation per season by multiplying the two variables.  
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Various theoretical distribution functions have been used to describe the model 

variables. Precipitation events during the summer months are generally of the convective 

storm type such that the events appear to occur in an independent manner in time and 

space. Hence the variable for the number of events per season has been described using a 

Poisson distribution. Further, geometric distribution is used to describe precipitation 

depth (Fogel and Duckstein, 1969; Duckstein et al., 1972; Fogel and Duckstein, 1981; 

Bogardi et al., 1988) 

 

Spatial Modeling of Precipitation 

 Cold-season Precipitation 

Topographic features in Central Arizona, such as the San Francisco Mountains, 

the Mogollon Rim and the White Mountains play an important role in the spatial 

distribution of precipitation in these areas. These topographic features cause orographic 

lifting of air masses and accentuate the frontal and convection activity during 

precipitation period (Beschta, 1976). Some studies have been conducted to characterize 

the spatial distribution of precipitation in central-Arizona at a large-scale level (Beschta, 

1976; Baker 1982; Campbell and Ryan, 1982) and at a watershed level (Rupp, 1995). 

Beschta, (1976) developed isohyets of mean annual precipitation of 127 mm 

interval for the pine and spruce-fir forest type for a large area that stretches about 170 

kilometers eastward. Based on over 22 year data, Baker (1982) found that precipitation 

on Beaver Creek increased with elevation at a rate of 85 mm for every 300 m. Campbell 

and Ryan, (1982) determined the average areal precipitation over the Beaver Creek 

watershed using Theissen polygon method. Even though the Theissen Polygon is an 
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acceptable method to find the average precipitation for a watershed, other methods such 

as the isohyetal method would be appropriate for this kind of situation. The isohytal 

method, which uses a computer to generate contours (isohyets) of equal precipitation 

depth, makes a better representation of the precipitation distribution than Theissen 

polygon when orographic influence on precipitation is significant (Dingman, 1994; Ward 

and William, 1995).  

Campbell and Ryan, (1982) indicated that precipitation increases with elevation 

on the southwestern slopes of Arizona. On the other hand, areas of the same elevation 

further north and east receive less amount of precipitation due to rain shadow effect. This 

is because the predominately southwesterly wind lifts up the air masses along 

southwestern slopes. The air masses rise and cool and result in condensation and 

precipitation. After the air masses lose their moisture during the orographic process in the 

windward direction, they become drier as they move to the leeward directions that cause 

the leeward slope to be warmer and drier. Due to the fact that spatial distribution of 

precipitation is affected by different factors, a simple regression between elevation and 

precipitation may not be a reliable model that can be used widely. This problem is 

illustrated in the work of Beschta (1976), which showed that a 35 cm precipitation depth 

variation occurs between two points of equal elevation but at different locations within 

the pine and the mixed-conifer forest types of central Arizona.   

Rupp (1995) analyzed the spatial distribution of the wet season precipitation in 

one of the experimental watersheds, Woods Canyon, in the Beaver Creek area. The 

watershed is located in the Mogollon Rim where major orographic features have been 

identified as having an important influence on the spatial distribution of precipitation. He 



 25 
 

examined how precipitation depth and duration of precipitation vary with topographic 

characteristics of the area such as elevation, geographic location in terms of Universal 

Transverse Mercator (UTM) coordinates, and aspect in relation to the prevailing wind. 

He finally produced a multvariate regression equation relating precipitation depth and 

duration with those variables. Elevation shows strong correlation with precipitation depth 

next to UTM-Y coordinate, on the other hand, duration of precipitation in the area is 

highly influenced by elevation, which supports the previous studies in central Arizona. 

Aspect plays little role in spatial distribution of both depth and duration of precipitation 

in the area as compared with elevation. According to Rupp (1995) the reason for the 

small role of aspect played in the spatial distribution of precipitation may be that the 

topographic features in the study area, such as hills and ridges, are not large enough to 

cause rain shadow effect.  

 

 Warm-season Precipitation  

Court (1961) proposed a bivariate Gaussian distribution approach that would give 

elliptical isohyets to describe the spatial distribution of convective storms in the 

southwestern United States. In his model, rainfall depths decrease exponentially away 

from the point of maximum rainfall or storm center within a roughly circular shape of 

diameter between 6.4-9.6 km (Fogel and Duckstein, 1969; Duckstein et al., 1973). 

Duckstein et al., 1973 suggested that dense and evenly distributed rain gauges are needed 

to obtain sufficient information about the spatial distribution of summer precipitation 

because of its scattered nature.  
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In general, the spatial distribution of summer precipitation shows the same pattern 

as winter precipitation in Arizona. Precipitation is highest in the summer at about the 

same location as it is in winter on the central Mogollon Rim (Jameson, 1969). Duckstein 

et al. (1973) have found similar result that summer thunderstorm precipitation increases 

with elevation in southern Arizona.  

 

Methods 

Temporal Analysis of Precipitation Pattern  

Cold-season Precipitation  

The cold-season precipitation model used in this study follows the one used by 

Rupp (1995), which is a modified version of the model used in Duckstein et al. (1975). 

The modified stochastic model developed in Rupp (1995) and adopted in this study 

allows the simulation of precipitation intensity, the most important variable input used to 

determine the amount of surface runoff and sediment yield. The previous models focused 

only on simulation of total daily rainfall, while this model includes storm duration, which 

allows a determination of individual storm intensity.  

The first modification of the model is redefinition of an event. An event is defined 

as uninterrupted rainfall or snowfall of any duration which can last minutes to many 

hours. If it stops raining then starts again after five minutes, the second period rainfall is 

considered a separate event. The second modification is the removal of the variable 

�group�. The definition of storm sequence, however, remains the same except for one 

difference. Duckstein et.al  (1975) defined storm sequence as three consecutive days of 

dry weather that separates two successive storm events. Their time resolution was one 
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day. However, this research deals with time period of as little as five minutes. To deal 

with the interval of storm events, Duckstein et.al (1975) equated an inter-arrival time of 

events between 1.5 and 2.5 days to two days, and 2.5 to 3.5 days to three days and so on. 

Therefore, in this study the minimum time between consecutive storm sequences is 

changed to 3.5 days.  

The new model, which is the modified of Duckstein et al. (1975) and used by 

Rupp (1995), is described as follows in terms of five variables: 

1. Time between sequences (days), 

2. Number of events per sequence,  

3. Time between events (hours), 

4. Precipitation amount per event (mm), and 

5. Duration of events (hours)  

    Figures 2-3a and 2-3b illustrate the relationship of these variables to each other. 

 

Figure 2-3a. Cold-season model variables for storm sequences. 
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Figure 2-3b. Cold and warm-seasons precipitation model variables for storm events. 

 

Warm-season Precipitation 
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(1988) dealt with the total rainfall depths and durations that occurred in consecutive rainy 
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The most important change in the model is a redefinition of an event, which is the 

same as that used for cold-season precipitation model, uninterrupted rainfall of any 

duration. The second modification is the removal of number of events per season, 

because this study attempts to describe the general pattern of individual warm-season 

precipitation events instead of a pattern of storms in a season. The new warm-season 

precipitation model, similar to Bogardi et al (1988) is described using three variables: 

1. Precipitation amount per event (mm) 

2. Duration of events (hours) 

3. Time between events (hours) 

Various theoretical distribution functions have been used in past studies to 

describe the probability distribution of precipitation characteristics (Eagleson, 1972; 

Duckstein et..al, 1973; Duckstein et al., 1975; Hanes et al., 1977; Rupp, 1995). Likewise 

the statistical simulation method used in this study involves the fitting of known 

theoretical probability distribution functions, such as Weibull, gamma and exponential to 

describe the above variables. One way of fitting these models to the observed data is 

using the method of moments. The method requires estimating the parameters of the 

various distribution functions (Barndorff-Nielsen et al., 1996). Some distributions require 

multiple parameters while others use only one parameter. The exponential probability 

distribution function, for example, uses only the mean of the population as its parameter 

the only parameter (see equation 2-1): 

                                                        (2-1) 
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where: )(xf   is the probability distribution function (pdf), β  is the population mean and 

x is a random variable.  

For example, to fit this exponential distribution function to the time between storm 

sequences, the mean of the sample data becomes the parameter β .   

Actual simulation of synthetic data from a probability distribution function (pdf) 

requires deriving its cumulative distribution function (cdf). The cdf is calculated by 

integrating the pdf over the desired range of variable values. For instance, to find the 

probability of occurrence, )(xF , of  the time between storm sequences that are less than 

or equal to x days, the pdf is integrated from 0 to x : 

     ∫=
x

dxxfxF
0

)()(                                                         (2-2)  

For example, the cdf of the exponential function in equation (2-1) can be expressed as:  

        ∫ −=
x

x dxexF
0

//1)( ββ                                                                    (2-3) 

Solving the integration in equation (2-3) gives: 

 

           β/1)( xexF −−=                                                                    (2-4) 

Next, to determine the time between two storm sequences for a given frequency, equation 

(2-4) is solved for the time as follows: 

                                          )1ln( Fx −−= β                                                              (2-5) 

where F is the cumulative frequency distribution function, and β  and  x  are as described 

above. The value of F is obtained using a random number generator which gives values 

that lie in the interval between zero and one.  
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            In the case of other probability distribution functions, such as the gamma 

distribution function, analytical integration of their pdf�s is not possible; therefore, 

approximations to the integral solution must be determined instead. The pdf of the 

gamma distribution function takes the following form: 

)(
)(

/1

α
β βαα

Γ
=

−−− xexxf                                                           (2-6) 

where α is the shape parameter and equals 2

2

σ
µ  ,    β  is the scale parameter and equals  

2σ
µ

, and )(αΓ  is the gamma function defined by  

 θθα θα de−
∞

−∫=Γ
0

1)(                                                                  (2-7) 

and µ  and 2σ  are the population mean and variance, respectively. 

 

            After the distributions were hypothesized for the data and their parameters were 

estimated, it is necessary to examine whether the fitted distribution is in agreement with 

the observed data. 

The test used in this study for assessing goodness-of-fit of the theoretical pdf�s to the 

observed data is the Kolomogorov-Smirnov test, or K-S test. The test compares an 

empirical distribution function, )(xFe , with the distribution function of the hypothesized 

distribution or theoretical distribution, )(xFt   (Law and Kelton, 1982). The null 

hypothesis of the K-S test is that the empirical pdf and the theoretical pdf are equivalent. 

If the test does not prove that the two distributions are statistically different, then the fit is 

assumed to be good. 
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When the observed data are sorted in ascending order, the empirical distribution function 

becomes:  

nixFe /)( = ;      =i  1,2,�.. n                                                                                        (2-8) 

where  i  is a specific observation in the samples.  

 The K-S test evaluates the difference between the empirical and the theoretical 

distribution function for each data point, X.  The test statistic is the maximum of these 

differences, D. This statistic is the largest (vertical) distance between ( )eF x and ( )iF x  and 

is determined using equation (2-9).  

 

{ }max ( ) ( )e t iD F x F x= −                                                                                               (2-9) 

for every x . D can be computed by substituting 
n
i  for )(xFe   as shown in equation (2-10) 

max ( )t i
iD F x
n

+  = − 
 

                                                                                                  (2-10) 

 

( 1)max ( )t i
iD F x

n
− − = − 

 
                                                                                           (2-11) 

then 

{ }−+= DDD ,max                                                                                                          (2-12) 

            If the value of D exceeds some critical value, d, the null hypothesis is rejected. 

 The critical value, d, depends on the sample size, n, the level of significance of the test, 

α , and on the hypothesized distribution function when the distribution parameters are 
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estimated from the observed data. Law and Kelton (1982) reviewed the procedures for 

the normal, exponential, and Weibull distributions.  

The �goodness of fit� is checked using two other tests in addition to the K-S test, 

called the Anderson-Darling test and the Cramer-Smirnov-Von-Mises test. Both tests are 

modifications of the Kolmogorov-Smirnov test. The Anderson-Darling test gives more 

weight to the tails than does the K-S test. The K-S test is distribution free in the sense that 

the critical values do not depend on the specific distribution being tested. The Anderson-

Darling test makes use of the specific distribution in calculating critical values. This has 

the advantage of allowing a more sensitive test and it has the disadvantage of requiring 

that critical values must be calculated for each distribution. The Cramer-Simirnov-von 

Mises test is similar to the Kolmogorov test, but somewhat more complex 

computationally (Stephens, 1977; Law and Kelton, 1982).  

 Three of the precipitation model variables (time between sequences, number of 

events per sequence, time between events) can be described using a univariate probability 

distribution functions described above. The modeling of depth and duration, however, is 

more complex because these two variables are not independent of each other. Therefore, 

a different method suitable for simulating two dependent random variables is used.  

Rupp (1995) used two different methods to generate the joint probability 

distribution function for duration and depth with a marginal gamma distributions. One of 

them is the trivariate reduction (TVR) method. The second procedure involves explicitly 

describing the conditional probability distribution of depth given the duration of the event. 

He found out that this method produced the best fitting pdf for simulation and it is used in 

this study to describe and simulate the joint distributions of duration and depth of 
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precipitation events for both cold and warm-seasons. This method of simulation using 

such a bivariate distribution function is described by Kottas and Lau (1978), and 

Schmeiser and Lal (1981) consider it an �excellent approach� especially when the 

dependency structure between the random variables is well understood.   

To develop the bivariate model for simulating storm depth and duration, the 

marginal distribution (the distribution of a univariate random variable) for duration is first 

found. Assuming the marginal distribution function to be gamma, the pdf for the duration, 

Ιτ  is: 

( )
1 1 1 11 /

1 1
1 1

1

( )( )
xx ef x

α α ββ
α

− − −

=
Γ

          (2-13) 

 

In this equation the 1α  and 1β  are respectively the shape and scale parameters of the 

gamma distribution for duration. 

A conditional distribution is then determined for depth. In this study, the 

conditional distribution for depth is assumed to be gamma with its shape and scale 

parameters being dependent on the duration. A visual examination of a plot of observed 

depth and duration hints that the gamma function is appropriate. Grayman and Eagelson 

(1969) made the same observation to describe storm data taken in Boston, Massachusetts. 

Letting 2x  equal the depth, the conditional pdf of depth given duration is expressed as  

 

( )
2 2 2 21 /

2 2
2 2

2

( )( )
xx ef x

α α ββ
α

− − −

=
Γ

                                                                                        (2-14) 
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where 2α  and 2β  are respectively the shape and scale parameters of the gamma 

distribution for depth given duration.  

As described previously, the shape and scale parameters are both calculated from 

the mean and variance such that 2
2

2
22 /σµα =  and 2

222 /σµβ = . To implement equation 

(2-14), it is necessary to know how the distribution of depth varies with duration. To gain 

an understanding of the structural dependency between duration and depth, a simple 

linear regression of depth versus duration is developed. The regression model is: 

 

0 1i i ib b xδ ε= + + ;                    i = 1,2,�����.n              (2-15) 

 

where iδ  is the depth, ix  is the duration, 0b  and 1b  are regression coefficients, and iε  is 

the error of the regression. Such a regression model gives an estimate of the mean depth 

conditional upon duration. 

The next step describes how the variance of the conditional distribution of depth 

varies with duration. To accomplish this task, the duration is first divided into intervals so 

that each interval contains approximately the same number of data points and that each 

interval has enough points to estimate a variance for that interval. The sample variance of 

depth for each duration interval is then calculated. The depth variances of each interval 

are regressed against the mean of the durations of the interval data to obtain a function 

that estimates the variance of depth conditioned upon duration. The regression model has 

the form: 

;110
2 ετ γ ++= ii ccv                 i = 1,2,�����.m              (2-16) 
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where 2
iv  is the variance of depth in the ith interval, 1τ  is the mean of the duration data in 

the ith  interval, γ  is a constant, 0c  and 1c  are regression coefficients, iε  is the error of 

the regression, and  m is the number of intervals.  

The above two regressions provide the expressions for estimating the mean and 

the variance of the depth conditional up on the duration. These functions are respectively,  

 

2 1 0 1 1( )x x b b x= +                       (2-17) 

and 

γττ iccv 101
2

2 )( +=                 (2-18) 

 

Substituting 2µ  for 2 1( )x x  and 2
2σ  for 2

2 1( )v x  into equations (2-17) and (2-18), 

respectively, gives: 

 

2 0 1 1b b xµ = +                (2-19) 

and 

2
2 0 1 1c c x γσ = +              (2-20) 

 

Knowledge of the conditional mean and variance of depth allows estimation of 

the shape and scale parameters for the conditional gamma pdf (equation 2-14). The shape 

and scale parameters for the conditional distribution of depth given duration are 

calculated using the following equations: 
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2 2 2
2 2 2 0 1 1 0 1 1/ ( ) /( )b b x c c x γα µ σ= = + +        (2-21) 

and 

2
2 2 2 0 1 1 0 1 1/ ( ) /( )c c x b b xγβ σ µ= = + +                   (2-22) 

 

The probability density functions for each one of the five cold-season and the 

three warm-season precipitation events characteristics are determined for one gauge (#38) 

in the study area. The data from the remaining gauges are used to analyze the spatial 

distribution of precipitation on the watershed. Statistical software known as SAS were 

used to develop the frequency distribution for each variable, to fit a theoretical 

probability distribution function (pdf) to the data of each variable, and generate random 

numbers to synthetically construct future scenarios of the two seasonal precipitation 

event types.  

 

Spatial Analysis of Precipitation Events 

The spatial distribution of the precipitation in the ponderosa pine forested area of 

north central Arizona is affected by the major orographic features such as the Mogollon 

Rim, the White Mountains and the San Francisco Peaks that dominate the landscape in 

the area (Beschta, 1976; Campbell and Ryan, 1982). The study watershed is situated 

along one of these physiographic features, the Mogollon Rim. Hence, studying the spatial 

distribution of precipitation across the watershed requires describing of the topographic 

and climatic characteristics of the study area. In general, those areas with highest 

elevation and where air masses rise the fastest are likely to receive the highest amount of 

precipitation. In mountainous regions, this rapid ascent takes place on the windward side 
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of the topography (Barros and Lettenmaier, 1994). For these reasons, an analysis of the 

areal distribution of precipitation needs to look at both wind direction during storm 

events and the areas where ascent occurs (Oki and Musiake, 1991). 

Actual precipitation data are available only for point locations where the gauging 

stations are in the watershed. Therefore, the precipitation events data measured at the 

gauging stations do not accurately represent the precipitation condition over the entire 

watershed because the depths and durations of the precipitation events vary with space over 

watershed landscape (Marquinez et al., 2003). The spatial distribution analysis of 

precipitation events, therefore, enables estimation of precipitation event depths and 

durations across the entire study watershed.  

This study examined the spatial distributions of cold and warm-seasons 

precipitation events and then used this spatial variation of total precipitation for each 

season to estimate the spatial distribution of individual events. The effects of the various 

landscape characteristics on the spatial distribution of precipitation depth and duration on 

the watershed were studied. The variables examined are gauge elevation, geographic 

location in terms of Universal Transverse Mercator (UTM) and aspect. Gauge elevation 

was selected because previous studies showed precipitation in the region generally 

increases with elevation (Beschta, 1976; Campbell and Ryan, 1982). Similarly, the UTM 

coordinates of the gauges were examined because they represent the general trend of the 

Beaver Creek watersheds rising northeastward. Finally, the aspects of the gauges were 

analyzed to see if differences in precipitation exist between windward and leeward sites. 

In the temporal analysis of the precipitation part of the study, precipitation for 

only one gauge, gauge #38, located at the outlet of the watershed was simulated. The 
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spatial analysis of precipitation across the watershed will be used to estimate the 

simulated amount of precipitation in the entire watershed given the simulated 

precipitation at gauge #38. The precipitation events depths and durations at any point in 

the watershed are assumed to be related to the depth and duration values determined at 

gauge #38. Therefore, this analysis examined the relationship between the ratio of the 

precipitation depth and duration at any point to the precipitation depth and duration at 

gauge #38 to determine the spatial distribution of precipitation events. The relationships 

are described in the form of regression equations.  

In the case of precipitation depth, the dependent variable in the regression 

equation is the ratio of precipitation falling at gauge i to that falling at gauge #38, while 

in the case of precipitation duration, the dependent variable is the ratio of the duration of 

precipitation at gauge i to that at gauge #38. In both cases, the independent variables are 

gauge elevation, UTM x-coordinate, UTM y-coordinate and aspect, and the analysis is 

made to determine the level of influence these variables have on the amount and duration 

of the precipitation at the different locations in the watershed. 

Once the prediction equations for precipitation depth and duration are determined, 

a GIS is implemented along with the equations to map the spatial distribution of event 

depth and duration. The use of GIS enables efficient determination of storm depth and 

duration at any location in the watershed. In this study, the watershed is divided into 90 

by 90 m cells and the elevation, position, and aspect for each one of these cells are 

determined. Once the storm depth and duration is simulated at gauge #38, then both the 

depth and duration at each cell are estimated using the respective prediction equation. 

Two grids are created in the process: one for the spatial distribution of storm depth and 
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the other for the spatial distribution of storm duration. These two grids are combined to 

form a third grid to describe the spatial distribution of storm intensity across the 

watershed. 

 

Analysis of Temperature and Form of Precipitation 

 In addition to a storm�s depth, duration and intensity, the form of its occurrence 

as rain, snow or a mixture of rain and snow, is also determined. Daily maximum and 

minimum temperatures are used to determine the form of precipitation in the cold-season 

and to calculate the average daily temperatures used in the various water balance 

equations of the next chapter. This study uses the same criteria used in Solomon et al. 

(1976) to determine the form of precipitation. Precipitation is considered rain when the 

minimum temperature exceeds 1.7o C (35o F). Precipitation takes the form of snow when 

the maximum temperature is below 4.4o C (40o F) and the minimum temperature is less 

than 1.7o C (35o F). The third condition which is a mix of rain and snow occurs when the 

maximum temperature exceeds 4.4o C (40o F) and the minimum temperature drops below 

1.7o C (35o F). When the precipitation is mixed, Solomon et al. (1976) used the following 

equation developed by Leaf and Brink (1973) to determine the amount of snow 

precipitation: 

 

PS = PT [1 � (Tmax - 1.7) / (Tmax - Tmin)]                                                                         (2-23) 
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where PS is the amount of precipitation that comes as snow in water equivalent, PT is the 

total event precipitation, and Tmax and Tmin are the maximum and minimum temperatures, 

respectively.  

The amount of precipitation that takes the form of rain is simply PT minus PS.  

Cold and warm-seasons temperature data taken at the outlet of the watershed are 

analyzed to estimate the daily maximum and minimum temperatures. Using the 

maximum and minimum temperatures, a data set of varying diurnal temperature is 

created. The sets of the daily maximum temperature and the varying diurnal temperatures 

are then divided into those days in which precipitation occurred and those days in which 

it did not. Best fit models are developed to the wet and dry day data to describe the 

change in the mean daily maximum temperature and the varying diurnal temperature 

throughout the seasons.  

During the simulation process, the daily maximum temperature and the diurnal 

temperature variation are generated independently. The daily minimum temperature is 

then calculated by subtracting the diurnal variation from the daily maximum temperature. 

The maximum and diurnal temperature variations are simulated using the lag-one 

Markov model (Fiering and Jackson, 1971) as adopted by Rupp (1995). This model is 

used to provide the correlation between subsequent data that occur on a daily basis. The 

lag-one, multi-period Markov model for temperature takes the general form: 

 

( ) ( ) 2/12
,1,1,

1
,, 1 jjjijaveji

j

j
jjaveji rStTT

S
S

rTT −+−+= −−
−

                                                  (2-24)                      
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where jiT ,  is the temperature generated on day j  in season i , 1, −jiT  is the previous day�s 

temperature in season i , javeT ,  is the mean temperature for day j, 1, −javeT  is the mean 

temperature for day 1−j , jr  is the lag-one autocorrelation coefficient for day j  and  

1−j , jit ,  is the normally distributed random variable with zero mean and unit variance 

for day j  in season i , and  iS  and  jS  are the standard deviations of temperatures of 

days j  and  1−j , respectively. 

In this study, two separate forms of equation (2-24) are used for each season: one 

for dry days when there was no precipitation and the other for wet days when there is 

precipitation. One autocorrelation coefficient is used for the dry days and the wet days, 

and both are assumed constant throughout the seasons. The mean maximum temperatures 

for both dry and wet days vary with time in accordance with relationships described using 

equations functions that fit the data. For example, the following parabolic equations are 

used to describe the change in daily maximum temperature with time for both dry and 

wet days, respectively: 

            

  2
210, xbxbbT idry ++=                                                                                                  (2-25) 

   

  2
543, xbxbbT iwet ++=                                                                                                  (2-26) 

 

where idryT ,  and iwetT ,  are the average maximum daily temperatures for dry and wet days 

for season i , respectively, x  is the time in days since the beginning of the season, and 0b  

through 5b  are regression coefficients.  
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A least-square regression procedure is used to determine the best fit to the data. The 

standard deviations for the dry and wet day temperatures used are the root mean square 

errors of the dry and wet day regression equations, respectively.  

    To simulate the maximum temperature for consecutive dry days, the following 

equation is used: 

 

( ) ( ) 2/12
,1,1,,, 1 drydryjijdryjidryjdryji rStTTrTT −+−+= −−                                                      (2-27) 

 

where jdryT ,  is the temperature calculated using equation (2-25) for day j , 1, −jiT  is the 

simulated temperature for day 1−j  and season i , 1, −jdryT  is the temperature calculated 

using equation (2-25) for day 1−j  and season i , dryr  is the autocorrelation coefficient 

for dry days, and dryS  is root mean square error (RMSE) of equation (2-25).  

 

The equation can be simplified by assuming that the standard deviations for temperature 

do not vary from day to day, thus  1/ −jj SS  equals one. 

 

When simulating the maximum temperatures for consecutive wet days, the following 

equation is used 

  

( ) ( ) 2/12
,1,1,,, 1 wetwetjijwetjiwetjwetji rStTTrTT −+−+= −−                                                     (2-28) 
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where jwetT ,  is the temperature calculated using equation (2-26) for day j , 1, −jiT  is the 

simulated temperature for day 1−j  and season i , 1, −jwetT  is the temperature calculated 

from equation (2-26) for day 1−j  and season i , wetr  is the autocorrelation coefficient for 

wet days, and wetS  is the root mean square error (RMSE) of equation (2-26).  

The same assumptions that were made in equation (2-27) are also made here. 

When a wet day follows a dry day, or a dry day follows a wet day, a special case of 

equation (2-24) for jr  equals zero is used. In other words, the model assumes no 

persistence for these two cases. This is equivalent to saying that the arrival or departure 

of a storm system interrupts the prevailing temperature pattern completely, and the new 

day�s temperature will be unaffected by the previous day�s temperature. When the 

autocorrelation is set to zero, equations (2-27) and (2-28) reduce to, respectively,  

 

dryjijdryji StTT ,,, +=                                                                                                        (2-29) 

and  

wetjijwetji StTT ,,, +=                                                                                                        (2-30) 

 

Finally, to simulate the minimum daily temperature, its diurnal variation is 

generated in the same manner as that for maximum temperature. The first step is to 

describe any trend in the diurnal variation with time throughout each season. As with the 

maximum temperature, the parabolic functions may be used to model the change in 

diurnal variation with time for dry and wet days. The functions for dry days and wet days 

are, respectively:   
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             2
876, xbxbbDV idry ++=                                                                                   (2-31) 

     

              2
11109, xbxbbDV iwet ++=                                                                                (2-32) 

 

where idryDV ,  and iwetDV ,  are the diurnal variations for dry and wet days for season i , 

respectively, x  is the time in days since the beginning of the season, and 6b  through 11b  

are regression coefficients. 

Simulation of the diurnal variation uses the same procedure as that for maximum 

temperature. The lag-one Markov equations for the dry diurnal variation and the wet day 

diurnal variation are, respectively, 

 

( ) ( ) 2/12
,1,1,,, 1 dvdrydvdryjijdryjidvdryjdryji rStDVDVrDVDV −+−+= −−                                 (2-33) 

 

( ) ( ) 2/12
,1,1,,, 1 dvwetdvwetjijwetjidvwetjwetji rStDVDVrDVDV −+−+= −−                                (2-34) 

 

where the diurnal variation )(DV  has simply replaced the maximum temperature )(T  in 

equations (2-27) and (2-28) and the subscript dvday  and dvwet  stands for the diurnal 

variation for dry and wet days, respectively.  

When a dry day follows a wet day, or a wet day follows a dry day, the diurnal variation is 

simulated by the special case of equation (2-33) and (2-34) for r equals zero. The 

equations for a dry day following a wet day and a wet day following a dry day are 

respectively, 
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dvdryjijdryji StDVDV ,,, +=                                                                                               (2-35) 

and  

dvwetjijwetji StDVDV ,,, +=                                                                                              (2-36) 

 

where the diurnal variation )(DV has simply replaced the maximum temperature )(T  in 

equations (2-29) and (2-30).  

 

Calculation of the daily minimum temperature is made by subtracting the simulated 

diurnal variation, jDV , from the simulated daily maximum temperature, jT . Once the 

daily maximum and minimum temperatures are determined for one site in the study area, 

the temperatures across the entire watershed are estimated by adjusting the site 

temperature for changes in elevation. Mean monthly environmental lapse rates for daily 

maximum and daily minimum temperatures for the ponderosa pine type of central 

Arizona are used to model the change in temperature with elevation. The lapse rates (see 

Table 2-1) are calculated from data in Beschta (1976).  
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Table 2-1 Mean monthly lapse rates for daily maximum and minimum temperatures 
(Beschta, 1976). 
 

 
 

  Month 

Lapse rate 
of maximum temperature 

(o C/km) 
 

Lapse rate 
of minimum temperature 

(o C/km) 
 

January 2.4 9.3 
February 4.6 10 
March 6.0 8.9 
April 6.2 10 
May 7.3 13.12 
June 8.02 13.12 
July 8.75 12.4 
August 8.02 11.67 
September 6.92 13.85 
October 5.6 10.8 
November 3.1 8.0 
December 0.5 8.5 
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Results 
 
Temporal Analysis of Precipitation Events 
 

The temporal behavior of the precipitation data from gauge #38, which is located 

at the outlet of Bar M watershed, was analyzed. The reasons why gauge #38 was selected 

were because: it is a recording gauge, which was equipped with a hygrothermograph for 

the twenty years of study, and it is the only gauge that is still in operation. During the 

twenty years of precipitation record used in this study, the gauge recorded precipitation 

on average 15 percent of the days in the cold-seasons and 20 percent of the days in the 

warm-seasons. Figure 2-4 shows the locations of the precipitation gauges in the Beaver 

Creek watershed area.  

We used SAS statistical software to analyze the observed frequency distribution 

of the precipitation characteristics and fitting of the various known theoretical probability 

distribution functions and identifying the best fitted model using four goodness-of-fit 

tests (SAS. institute, 2004). Four theoretical probability distribution functions including 

lognormal, gamma, Weibull and exponential distributions were fitted to the frequency 

distribution of the observed data. Kolmogorov smirinov, Cramer-Von Mises, Anderson-

Darling and Chi- square tests were used for the goodness-of-fit test to determine 

appropriate models for the data distributions. According to these tests, a model with p-

value of greater than or equal to 0.05 was selected as best model to describe the observed 

distribution data at 5% significant level which indicated that the data came from the fitted 

distribution.  
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Figure 2-4. Bar M watershed and the precipitation gauge network in the former Beaver 
Creek experimental pilot project. 
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Cold-season Precipitation 
 

The inter-arrival time between cold-season precipitation events in a sequence 

were truncated at 3.5 days, in order to re-normalize the data so that their cumulative 

distribution function (cdf) becomes one when the inter-arrival time is 3.5 days. The 

purpose for the truncation was to avoid simulation of a time between events greater than 

3.5 days, by definition, if the inter-arrival time between two events is more than 3.5 days, 

it is considered to belong to a different sequence. Of the four models fitted to the time 

between events data, the Weibull distribution function seems to fit better than the others 

(Figure 2-5). 

 
Figure 2-5. Frequency distribution of interarrival time between cold-season events fitted 
with Weibull probability distribution function (p-value = 0.01). 
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The distribution of the number of events per sequence was also best described 

using the Weibull distribution function while the time between sequences was described 

using gamma distribution. However, one adjustment is made to the time between 

sequences of cold-season precipitation to improve the fit. Because the lower limit of the 

time between sequences was 3.5 days, the distribution is shifted so that 3.5 days become 

the zero point. In practice, 3.5 days is subtracted from all the data prior to constructing 

the frequency distribution. This shifting of the distributions downward is easily corrected 

during simulation by adding 3.5 days to each value of the generated time between 

sequences. The frequency distribution of the number of events per sequences and the time 

between sequences with their respective best fitted theoretical frequency distribution 

functions are shown in Figures 2-6 and 2-7, respectively.  

The distribution of time between sequences was not significantly different from 

the gamma distribution at the 5% level of significance with a p-value of 0.5. However, all 

the four models fail to fit the time between events and number of events per sequence 

data at 5% level of significance. However, Weibull distribution performs well for both as 

compared with other models.   
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Figure 2-6. Frequency distribution of number of events per sequence fitted with Weibull 
probability distribution function (p-value = 0.01). 
 
 
 

 
Figure 2-7. Frequency distribution of time between sequences fitted with gamma 
probability distribution function (p-value = 0.5). 
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In the case of the joint distributions of depth and duration, the gamma distribution 

performed best in describing their marginal distribution functions than other distributions 

(see Figures 2-8 and 2-9). However, the model failed all the tests at the 5% level. As with 

sequence inter-arrival time, both the distributions of event depth and duration needed 

shifting before fitting. Because of the precision of the gauge charts upon which 

precipitation was recorded, event duration was measured at five minutes intervals. Any 

duration less than 2.5 minutes was assumed to be zero, while any event lasting between 

2.5 and 7.5 minutes was assumed to have a duration of five minutes. For this reason, the 

distribution was shifted downward so that a duration of 2.5 minutes, or 0.014667 hours, 

became zero. Similarly, since the precipitation depth value from gauge the charts began 

at 0.254 mm, a value of 0.127 mm was subtracted from the data before fitting. Once the 

values of duration and depth were generated using the shifted distributions, the simulated 

values were shifted back upward by adding 0.014667 hours and 0.127 mm, respectively. 

The model goodness-of-fit tests for the different precipitation event characteristics are 

shown in Table 2-2.  
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Figure 2-8. Frequency distribution of cold-season event depth fitted with gamma 
probability distribution function (p-value =0.04). 

 
 
Figure 2-9. Frequency distribution of cold-season event duration fitted with gamma 
probability distribution function (p-value = 0.035). 
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Table 2-2. p-values for the best fitted models of cold-season precipitation characteristics 
 

Tests 

Variables 

Best fitted 
probability 
distribution 
functions 

Kolmogorov-
Smirnov  

Cramer-
Von 
Mises 

Anderson-
Darling 

Chi-
Square 

 Level of 

significance  

Time between 
sequences Gamma 0.5 0.5 0.5 0.184 5%
Number of event 
per sequence Weibull   0.01 0.01 0.001 5%
Time between 
events Weibull   0.01 0.01 0.001 5%
Duration of 
events Gamma       0.035 5%
Depth of events Gamma       0.04 5%

 

Because of the dependency between duration and depth, we used explicit 

conditional bivariate distribution (ECD) to simulate the joint distribution of both 

precipitation characteristics. The regression equation of event depth (d) in terms of event 

duration (t) is: 

  

d = 1.522 t - 0.9923;                                r2 = .68                                                          (2-37) 

 

and the regression equation for the variance of event depth with respect to its duration is  

 

Sd
2

 = 0.0462 t2.7919 + 1.004;           r2 = .988                                                                  (2-38)   

 

The value, 2.7919, of the exponent in equation (2-38) was arrived at by trial and error to 

meet two criteria: a maximum r2 value and a y-intercept that approaches a value of one to 

be consistent with the data. The bivariate distribution generated using the ECD method 
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provided good fit to the observed data, except for short duration and low depths (see 

Figures 2-10 and 2-11).  
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Figure 2-10.  Bivariate probability density of observed cold-season precipitation depth. 
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Figure 2-11.  Bivariate probability density of simulated cold-season precipitation depth. 
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To examine the performance of the cold-season precipitation model, twenty cold-

seasons total precipitation depths are simulated, amounting to approximately 780 

precipitation events. We compared the relative frequency distributions of the twenty 

years measured total cold-season precipitation data with twenty years of simulated data. 

Based on the relative frequency histograms of the measured and simulated data shown in 

Figures 2-12 and 2-13 respectively, there was a significant difference in the mean and 

range values. The mean and the range of the observed data are 423 mm and 300 mm, 

respectively, while the simulated data has a mean of 482 mm and a range of 312 mm. 

However, there was only a small difference between the two data types in the most often 

occurring (mode) total cold-season precipitation depth. The measured data showed a 

mode between 400 to 450 mm, while the mode of the generated data was between 450 

and 500 mm.  

As a result, care must be taken in interpreting the actual and simulated cold-

season total precipitation event depths due to small number of sampling years (twenty 

years). Overall the results showed that the winter season point precipitation model 

performed well. 
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Figure 2-12. Relative frequency of measured cold-season precipitation. N = 20 years. 
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Figure 2-13. Relative frequency of simulated cold-season precipitation. N = 20 years. 
 

 
  Warm-season Precipitation 

Unlike cold-season precipitation, warm-season precipitation events are 

independent from each other hence we used an independent model to describe them. 

Inter-arrival time between events, event depth, and event duration were the variables we 

considered to simulate the warm-season precipitation. As in the case of cold-season 
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precipitation, the four theoretical probability distribution functions were unable to 

describe the distribution of the variables well enough. However, the Weibull distribution 

performed better than the others to describe inter-arrival time between events (Figure 2-

14). On the other hand, the marginal distribution of both duration and depth of events are 

described using the gamma distribution (Figures 2-15 and 2-16).  

 

 
Figure 2-14. Frequency distribution of interarrival time between warm-season events 
fitted with Weibull probability distribution function (p-value =0.01). 
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Figure 2-15. Frequency distribution of warm-season event depth fitted with gamma 
probability distribution function (p-value =0.042). 
 
 
 

 
Figure 2-16. Frequency distribution of warm-season event duration fitted with gamma 
probability distribution function (p-value =0.032). 
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The explicit conditional bivariate distribution (ECD) was also used to simulate the 

summer precipitation event depth and duration. A regression equations were developed 

that relate depth of precipitation event (d) and duration (t) as well as variance of event 

depth and variance of event duration (equations 2-39, and 2-40). The regression equation 

of event depth in terms of event duration is  

 
d = 1.298 t + 2.8964;                               r2 = .562                                                        (2-39) 
 
 
Sd

2
 = 10.299 t1.4979 + 1.002;                      r2 = .88                                                         (2-40)   

 
 

The same trial and error procedure was applied to determine the 1.4979 exponent 

in equation (2-40) to attain a maximum r2 value and a y-intercept close to one. The 

bivariate distribution generated using the ECD method provided good fit to the observed 

data, except for low depth and small durations (see Figures 2-17 and 2-18).  
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Figure 2-17. Bivariate probability density of observed warm-season precipitation depth. 
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Figure 2-18. Bivariate probability density of simulated warm-season precipitation depth. 

 
The performance of the warm-season precipitation model was examined by 

comparing the recorded twenty year total warm-season precipitation depth with the 

simulated twenty year seasonal precipitation depth (Figures 2-19 and 2-20). As shown in 

the relative frequency histogram, there was a discrepancy in the range values. The range 

of the actual measured warm-season total precipitation is 219 mm, while the generated 

precipitation data has a range of 286 mm. In addition, there was a small difference 

between the mean values of the observed and simulated data. The average observed 

precipitation amount was 203 mm, where as the average simulated amount was 215 mm. 

However, the modes in both cases were similar (200-250 mm). Due to short data 

collection period and best models inadequacy, there was a slight difference between the 
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actual and simulated precipitation amounts, but in general the warm-season precipitation 

simulation model performed better than that of the cold-season.   
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Figure 2-19. Relative frequency of the actual warm-season precipitation. (N = 20 years). 
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Figure 2-20. Relative frequency of simulated warm-season precipitation. (N = 20 years). 

 



 64 
 

Spatial Analysis of Precipitation 

The spatial variability of precipitation in the Bar M watershed was analyzed using 

a subset of the gauges in the Beaver Creek precipitation gauge network. In selecting 

gauges we considered all gauges that were operational at the same period of time, as well 

as being within and nearby the Bar M watershed. However, gauges with elevations much 

lower than that of the Bar M watershed and located in other forest type were excluded.  

An additional restriction necessary for the storm duration analysis is gauges to be 

recording ones. 

Twenty out of 89 gauges fulfilled the above criteria and had at least with six years 

of precipitation data. The depth and duration of all the individual storms used were 

separately summed over the six year period to obtain a six-year total of storm depth and a 

six-year total of storm duration. The ratio of the six-year total precipitation depth in 

gauge i  (Pi) to the six-year total depth in gauge #38 (P38) and the ratio the six-year total 

precipitation duration in gauge i (Di) to that of gauge (D38) were used as dependent 

variables, (Pi/P38) and (Di/D38) respectively. The ratio was used to determine the spatial 

distribution of precipitation depth and duration across the watershed given any simulated 

storm depth and duration at gauge #38.  

Latitude, longitude, elevation, and aspect were chosen as independent variables in 

the regression equation. The correlations between (Pi/P38) and (Di/D38) and any of the 

four dependent variables were examined to determine the likely candidates for 

developing a best regression equation. A high correlation coefficient between the 

predictor variables and the predicted ones indicates a preferred regression equation.  
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Cold-season Precipitation   

The correlation coefficients between the linear regression equations of (Pi/P38) 

and (Di/D38) and the four independent variables for cold-season precipitation are shown 

in Table 2-3. 

 

 Table 2-3. Correlation coefficients for precipitation depth and duration for cold-season  

Independent variable  Dependent 
variable Latitude Longitude Elevation Aspect 
(Pi/P38)  0.748 -0.045 0.183 -0.16 
 (Di/D38) 0.438 0.106 0.516 -0.142 
 
 

In addition, Figures 2-21a through 2-21d show the scatter plot and the best fit 

regression line of each predictor variable versus the ratio of precipitation depth, Pi to P38. 

Latitude (UTM-Y) seems to have the strongest effect on the distribution of precipitation 

depth with more northerly precipitation gauges (higher UTM-Y values) receiving more 

precipitation amount. Elevation and aspect show respectively positively and negatively 

weak relationships with depth. The correlation between longitude (UTM-X) and 

precipitation depth is even weaker and negative.  

A stepwise forward ranking procedure was applied to select the best predictor 

among the four variables to create the best fit regression equation for the change in 

precipitation depth with space. The best fit regression equation was created with UTM-Y 

but addition of any one of the three variables: UTM-X, elevation, aspect have little or no 

effect on the regression equation (see equation 2-41). Since the relationship between 

UTM-Y and the precipitation depth appear nonlinear, a second degree polynomial 

regression equation represents the relationship better. The non linear model has a value of 
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r2 that is eight percent higher than the r2 for a linear regression representation of the 

problem. These shows that gauges located on a more northerly position receive large 

amounts of precipitation. (Figures 2-21b and 2-23).  

    
Pi/P38 = 2x10-13(UTM-Y) 3 - 2x10-6(UTM-Y) 2 + 7.827(UTM-Y) -1x107                     (2-41) 
                                   
                                       r2 = 0.748 
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The landscape parameters such as longitude and elevation may have little effect 

on the spatial distribution of precipitation may be due to the relatively small areal extent 

of the study area. In addition, aspect does not play a large role because the topographic 

features within and around the study area, such as hills and ridges are not large enough to 

cause any rain shadow effect. Another reason may be that storms were not analyzed on an 

individual basis. Instead they were all assumed to come from the same direction, which, 

though generally the case, is not always true.  

As with depth, the spatial distribution of storm duration was analyzed by looking at the 

effects of each of the spatial variables (latitude, longitude, elevation and aspect) on the 

response function (duration) using a linear regression. The r2 values of the regression 

equations of duration versus each spatial variable and their respective scatter plot are 

shown in Table 2-3 and Figures 2-22a through 2-22d. The highest correlation coefficients 

are between duration and elevation, and duration and latitude. These means gauges 

located at higher elevation and on a more northerly position receive precipitation that last 

longer (Figures 2-22b, 2-22c, and 2-24). Hence, the best fit regression model includes 

elevation and latitude and has the form shown in equation 2-42. 

 

Di/D38 = 3.148 x 10-4(ELEV) + 3.3 x 10-6(UTM-Y) -12.37                                          (2-42) 

                           r2 = 0.66 
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Figure 2-23. A simulated spatial distribution of a sample cold-season precipitation depth.  
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Figure 2-24.  A simulated spatial distribution of sample cold-season precipitation 
duration.  
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Warm-season Precipitation   

As for the cold-season precipitation depths and durations the spatial distribution 

of warm-season precipitation depths and durations are described in terms of the four 

independent spatial variables of latitude, longitude, elevation, and aspect. The correlation 

coefficients between the linear regression of precipitation storm depth ratio (Pi/P38) and 

storm duration ratio (Di/D38) in any location i with respect to the four independent 

landscape variables are shown in Table 2-4.  

 

 Table 2-4. Correlation coefficients between warm-season precipitation depth and 
duration and the four spatial variables.   
 
  

Independent variables Dependent 
variables Latitude Longitude Elevation Aspect 
(Pi/P38)  -0.32 0.57 0.297 0.092 
 (Di/D38) -0.11 0.51 0.46 -0.0002 
 

Figures 2-26a through 2-26d show the scatter plots and the best fit regression 

lines of each spatial variable versus the precipitation depth ratio. The correlation 

coefficients between the precipitation ratio and the variables, longitude (UTM-X), 

latitude (UTM-Y), and elevation were significant at the 5% level, while that between the 

variable, aspect and the precipitation depth ratio was weak. More northerly and easterly 

precipitation gauges and those located at higher elevations received larger amounts of 

precipitation.  

A stepwise forward ranking procedure was applied to select the best predictor 

from among the four variables to create the best fit regression equation starting with the 

variable that has the highest correlation coefficient, in this case, is longitude. The best 
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regression equation was created with UTM-X, UTM-Y and elevation and addition of 

aspect did not improve the r2 value of the regression equation (equation 2-43). This 

indicates that gauges located in the southeast and at higher elevation, more southerly, and 

more easterly position receive higher amount of precipitation (Figures 2-25a, 2-25b, and 

2-27).  

 

    
Pi/P38 = 1.04x10-7(UTM-X) _ 4x10-6(UTM-Y) + 3.77x10-4(ELEV) + 16.88                (2-43)                      
                                    
                                        r2 = 0.45 
 

In the case of summer precipitation duration, there was a better relationship 

between duration and the variables longitude and elevation. Hence, gauges located at 

higher elevation and on a more easterly location received precipitation of longer duration 

(Figures 2-26a, 2-26c, and 2-28)     

For this reason, the best regression model includes longitude and elevation and has the 

form 

 

Di/D38 = 1.19x10-5(UTM-X) + 2.68x10-4(ELEV) - 4.79                                               (2-44) 
 
                                    r2 = 0.55 
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Figure 2-27. A simulated spatial distribution of a sample warm-season precipitation storm 
depth  
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Figure 2-28. A simulated spatial distribution of sample warm-season precipitation storm 
duration  
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Analysis of Temperature 

 Analyzing the temperature of the study area is important for a number of reasons. 

It helps to determine the type of precipitation during the cold-season, and it is one of the 

main factors contributing to evapotranspiration, snowmelt, and sublimation. Usually daily 

temeratures vary with the number of days of the year. Hence, temperature equations are 

developed for wet and dry days usng the lag-one Markov model. 

  

Cold-Season Temperature  

Cold-season season daily maximum temperatures for dry and wet days are 

described using parabolic functions. This is done by regressing temperature against day 

of the year to determine the equation that best fit the data. In constructing the regression 

equations, October 1st was set as day 1and April 30th, the end of the winter season, as day 

212. The regression equation for the maximum temperature during a dry day with respect 

to the sequential number of day from the beginning is 

  

Tdry = 23.391 - 0.278(DAY) + 0.0012(DAY)2                                                              (2-45) 

                                r2 = 0.89 

 

Where Tdry (o C) is the predicted daily maximum temperature in a dry (or non rainy) day 

and DAY is the number of days since the beginning of the cold-season. The root mean 

square error (RMSE) of the regression equation is 1.48, the value of its r2 is 0.89, and it is 

significant with p-value of less than 0.0001. Similarly, the regression equation for the 
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maximum temperature during a wet day in terms of the day number from the beginning 

of the cold-season is  

 

Twet = 15.846 - 0.217(DAY) + 0.0009(DAY)2                                                              (2-46) 

                             r2 = 0.48 

Where Twet (o C) is the predicted daily maximum temperature in a wet day. The RMSE 

for the regression is 3.468, while its r2 value is 0.48, and, similar to that of maximum 

temperature, the equation is significant at the 0.0001 level. The twenty years average 

maximum daily temperatures for both dry and wet days and their best fit to parabolic 

functions are shown in Figure 2-29. 

     We also developed equations to express the diurnal variation of temperatures for 

dry and wet days. As shown in Figure 2-30, the same procedure as with the maximum 

temperature is used to show the trends of the average diurnal temperature variations. 

Equation 2-47 is a parabolic expression that best represents the diurnal temperature 

variation in dry days. 

 

DVdry = 21.84 - 0.0711(DAY) + 0.0003(DAY)2                                                           (2-47) 

                            r2=0.41 

where DVdry (o C) is the predicted diurnal variation in temperature during dry days.  

The RMSE of the regression for the diurnal temperature variation is 1.33, its r2 

value is 0.41 and is significant at the 0.0001 level. 

For the wet days data the best fit regression equation for the diurnal temperature 

variation with respect to days since the beginning of the winter season is: 
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DVwet = 16.22 - 0.0977(DAY) + 0.0005(DAY)2                                                          (2-48) 

                                        r2=0.42 

where DVwet (o C) is the diurnal variation in temperature when precipitation occurs. The 

RMSE for such data is 2.1 and the equation has an r2 value of 0.4 with significant level of 

0.0001.  

Simulation of the daily maximum temperatures for consecutive dry and wet days 

was done using the Markov equations of (2-25) and (2-26), respectively. These equations 

require determining the lag-one autocorrelation coefficients for each day type. The 

autocorrelation coefficients for both dry and wet days are found to be high: 0.839 and 

0.892 respectively. This indicates that daily maximum temperatures do not vary greatly 

from one day to the next day. 

Similarly, simulation of the daily minimum temperature using the Markov 

equations of (2-33) and (2-34) needs the use of the lag-one autocorrelation coefficients 

for diurnal temperature variation for both consecutive dry and wet days, respectively. The 

autocorrelation coefficient for consecutive dry days equals 0.456, while that for 

consecutive wet days is equal to 0.281. Then, the simulated maximum and minimum 

temperature for cold-season were used to determine the form of the precipitation falling 

in the wet days. Eventually, the simulated results are used to determine the average day 

time and night time temperatures used to calculate the various output components of the 

water balance in the next chapter.   
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Figure 2-29. Graph of average cold-season daily maximum temperatures for dry and wet 
days fit the second degree parabolic functions. 
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Figure 2-30. Graph of average cold-season diurnal temperature variations for dry and wet 
days fit the second degree parabolic functions. 
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Warm-Season Temperature  

Warm-season daily maximum temperature data for days when there was no 

precipitation (dry days) and for those with precipitation (wet days) were described using 

parabolic functions. Maximum temperatures were also regressed with respect to day of 

year to determine the equation that best fit the data. In constructing the regression 

equation, May 1st as set as day 1and September 30th as day 153, the last day of the 

summer season. 

    

The regression equation for dry days maximum temperature with respect to the number 

of warm-season day count (DAY) is 

  

Tdry = 17.648 + 0.2899(DAY) - 0.0017(DAY)2                                                            (2-49) 

                                 r2 = 0.91 

Where Tdry (o C) is the predicted daily maximum temperature for days with no rain and 

DAY is the number of days since the beginning of the warm season.  

The RMSE of the regression equation is 1.01, it has an r2 value of 0.91, and is 

significant with p-value less than 0.0001. Similarly, the regression equation for the wet 

days maximum temperature with respect the number of day count from the beginning of 

the warm season is  

 

Twet = 10.071 + 0.4005(DAY) - 0.0022(DAY)2                                                            (2-50) 

                                 r2 = 0.69 

where Twet (o C) is the predicted daily maximum temperature in the presence of rain.  
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The RMSE for the regression equation is 3.12, while its r2 value is 0.69 and it is 

significant at the 0.0001 level. Figure 2-31 shows the scatter plots of the twenty years of 

maximum average daily temperatures for both dry and wet days and their best fit 

parabolic curves. 

   In the case of warm-season diurnal variation in temperature, a third degree 

parabolic function is fitted to the twenty year data (see Figure 2-32). For dry-days data, 

the best fit regression equation for diurnal temperature variation with respect to the 

number of days since the beginning of the summer season is 

 

DVdry = 20.043 + 0.242(DAY) - 0.0041(DAY)2 - 0.00002(DAY)3                              (2-51) 

                                               r2 = 0.62 

 

Where DVdry (o C) is the predicted diurnal variation in temperature during dry days.  

The RMSE for the regression equation is 1.27, while its r2 value is 0.62 and it is 

significant at the 0.0001 level. For wet days the best-fit equation is  

  

DVwet = 17.849 + 0.1282(DAY) - 0.0027(DAY)2 + 0.00001(DAY)3                         (2-52) 

                                           r2 = 0.39 

 

where DVwet (oC) is the diurnal variation in temperature during wet days. The RMSE of 

the equation is 1.45 and has an r2 value of 0.39 with 0.0001 significance level. 

The autocorrelation coefficient of maximum daily temperatures for consecutive 

dry days is 0.96, while that for consecutive wet days is 0.735. In the case of diurnal 
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temperature variations, the autocorrelation coefficients for consecutive dry and wet days 

are respectively, 0.85 and 0.27. The diurnal temperature variations for dry and wet days 

are simulated using the Markov equations of 2-25, 2-26, 2-31 and 2-32 respectively. In 

the warm season, precipitation comes in the form of rain, so the simulated maximum and 

minimum temperatures are used to determine the average daily temperatures during day 

and night times when calculating the various water balance output components described 

in the next chapter.   
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Figure 2-31. Graph of average warm-season maximum temperatures for dry and wet days 
fitted with second degree parabolic functions. 
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Figure 2-32. Graph of average warm-season diurnal temperatures variation for dry and 
wet days fitted with three degree parabolic functions 
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Summary and Conclusions 

A stochastic, event based approach is used to describe and simulate the temporal 

distribution of both cold and warm-seasons precipitation events in a particular ponderosa 

pine watershed in north-central Arizona. In addition, the spatial distribution of 

precipitation in the watershed is described in terms of various landscape variables such as 

latitude, longitude, elevation and aspect and displayed in a map form using GIS.  

Simulated variations in the daily temperature are used to determine the form of 

precipitation, snow, rain or mixed in the cold season, and to calculate the various output 

components of the water balance model in the next chapter.  Daily maximum and 

minimum temperatures are also described as stochastic processes and simulated using 

lag-one Marko Model. 

 The nature, type and causes of precipitation during cold and warm seasons in the 

study area are different. Cold-season precipitation often comes in the form of snow 

resulting from frontal storms that move into the region from the Pacific Northwest. These 

storms have durations of more than one day with separate storms often being related to 

each other by large-scale weather patterns. In contrast, warm-season storms are 

convective storms that are highly-localized, often intensive and short lived rains coming 

from the Gulf of Mexico. Because of the nature of precipitation in the two seasons, 

different models are employed to describe the seasonal precipitation characteristics. Five 

variables are used to describe cold-season precipitation characteristics. They are time 

between sequences, number of events per sequence, event depth, event duration, and 

inter-arrival time between events. However, only the last three variables:  event depth, 
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event duration, and inter-arrival time between events are used to describe the summer 

precipitation characteristics.  

In the case of cold-season precipitation, events having an inter-arrival time less 

than 3.5 days are grouped into sequences. The assumption behind this grouping of events 

is that those events that occur close together in time are not independent events, while 

those arriving apart are assumed to be independent. Therefore the time between events 

and the time between sequences are modeled independently. The time between sequences 

is described using a gamma probability distribution function while time between events is 

described using Weibull probability distribution function. The Weibull probability 

distribution function is also found to best describe number of precipitation events per 

sequence. The same model, weibull,  fit the time between events of warm-season.  

Simulating precipitation event depth and duration requires knowledge of a joint 

probability density function for the two characteristics due to their dependency on each 

other. The method first requires describing each one of them using a univariate 

probability distribution function, which in this case, is the gamma distribution function. 

The second step is to describe the conditional distribution of depth given duration. In this 

study, the conditional pdf for depth given duration was also determined to be the gamma 

distribution function with shape and scale parameters that vary with event duration. The 

same method is used to describe and simulate the warm-season event depth and duration.  

An analysis of daily temperature versus days since the beginning of the cold and 

warm-seasons indicates that both seasons can be described by fitting the parabolic 

functions to the data. However, the analysis reveals the existence of too much variability 

in the daily changes in temperature to describe them sufficiently using a single function. 
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Therefore, the variability of daily temperature is also modeled in addition to the daily 

trend. The variation in temperature from the parabolic regression curve is simulated using 

a random-number generator to produce values for deviation from the regression curve, 

assuming a normal distribution for the error of the regression. In addition, the tendency 

for temperature to show persistence from one day to the next is described using a lag-one 

Markov process.    

Though the temporal precipitation model performs well, there are several 

drawbacks that need further study. Two of these drawbacks are related to the fitness 

quality of the theoretical distribution functions to the observed data. In the cold-season 

precipitation model, only the time between sequences satisfied all the goodness-of-fitness 

test criteria. The other variables that describe the cold-season precipitation events as well 

as the warm-season precipitation events did not find probability distribution functions 

that fit well. This may be because of limited amount precipitation data, in this case, 

twenty years of data, which may not be adequate to describe the distributions of the 

variables with the selected theoretical distribution functions. The second problem may be 

that the model describing cold-season precipitation events over-estimates the number of 

short duration and low depth storms. The effect of this problem, however, may eventually 

be small because though these small storms make up the majority of events, their 

contribution to the total water yield is usually little. But situation with the warm-season 

precipitation model is different, the model seems over-estimate the average total seasonal 

precipitation amount which result in increased total warm-season water yield.   

Another problem may come from the difference in time-scales between the 

precipitation generator and the temperature data used. Precipitation is described in 
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minutes of time resolution, while temperature is simulated on a daily basis.  A procedure 

can be developed in the future to describe all related variables with the same time 

resolution. This would help to simulate possible changes in the forms of precipitation 

events within a day, such as having snow in the morning and rain in the afternoon. In 

addition, reading temperature continuously throughout the day would be useful to better 

estimate the other hydrologic processes, such as evaporation and transpiration.  

     The spatial analysis of precipitation shows that the variations in the cold and 

warm-seasons precipitation depths and durations in the study can be partially explained 

by latitude, longitude, elevation, and aspect, though the effects of each variable is 

different from the other. A regression analysis results in a prediction equation that can 

estimate the spatial distribution of storm depth given latitude (in UTM coordinates) for 

cold-season with an r2 value of 0.65. Also a linear regression has been developed to 

predict cold-season precipitation duration with respect to longitude and elevation and 

having the same r2 value of 0.66. In the warm-season, elevation, latitude, and longitude 

seem to have more influence on the spatial distribution of depth and duration than the 

other variables. The r2 values of the prediction equations for the warm-season 

precipitation event depth and duration are 0.45 and 0.55 respectively. The smaller r2 

values in both cold and warm-season precipitation distributions indicate that a significant 

portion of the spatial variability of precipitation depth and duration is left unexplained. 

Perhaps an analysis of individual storms may provide more information regarding the 

spatial distribution of precipitation events across the watershed.  

There are many factors that may influence the spatial variability of precipitation 

event depth and duration. As a result, care must be taken when applying the findings of 
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the spatial analysis to areas outside the study watershed. The Mogollon Rim is the 

dominant landscape feature that affects the spatial distribution of precipitation events in 

the area. The factors controlling the areal distribution of precipitation on watersheds 

along the Mogollon Rim will be different from those on the Bar M watershed. 

Overall the cold and warm-seasons precipitation event models presented in this 

study are useful tools for describing the seasonal precipitation patterns that occurs over a 

mountainous forest system. In addition to this, it provides precipitation and temperature 

inputs to the water balance model for use in estimating water yield from upland 

ponderosa pine forest watersheds. 
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Chapter 3 

Determination of Water Yield Through Precipitation-Runoff Relationship 

Abstract 

Event-based and spatially-varied cold and warm-seasons water yield models for the 

ponderosa pine type forest of Arizona are developed in this part of the thesis. The study 

area is Bar M watershed, located in the north-central Arizona 42 km south of Flagstaff 

with an area of 6,678 ha. Surface runoff is estimated by means of a water balance 

approach that accounts for all important hydrological processes such as canopy 

interception, evaporation, transpiration, snow accumulation and melt, infiltration, and soil 

water storage. A geographic information system (GIS) is used to divide the study 

watershed into 90 by 90 m cells on the basis of watershed characteristics such as 

elevation, slope, aspect, canopy cover, and soil type. Radiation balance and water balance 

are computed for each cell, to estimate surface runoff from the cell. Surface runoff is 

routed from cell to cell in the direction of flow as determined by GIS, and the total water 

yield is the surface runoff generated in a cell located at the outlet of the watershed. The 

estimated water yield for cold-season is 105 mm, which is 22 percent of the total seasonal 

precipitation falling in the area. The water yield estimated in the warm-season is 4.3 mm, 

which is 1.9 percent of the total seasonal precipitation. Due to the spatial variation of the 

various landscape characteristics such as latitude, longitude, elevation, and aspect, the 

water yield in both seasons is variable in the watershed.   
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Introduction 
 

Ponderosa pine forests, which occupy 20 percent of the Salt-Verde Basin in 

Arizona, used to supply over 50 percent of the total amount of the water for Phoenix 

before the completion of the Central Arizona Project (Baker, 1982). In the study area, the 

cold season (which roughly runs from October to April) precipitation accounts for over 

65 percent of the annual precipitation. The remaining one third of the annual precipitation 

comes during July, August, and September (Beschta; 1976). Nearly 90 percent of the 

water yield is generated during the cold-season primarily from snow melt (Baker, 1986). 

 The purpose of this research is to develop event-based precipitation-runoff 

relationship models for both cold and warm-seasons that take into account the temporal 

and spatial distribution of precipitation, and other important climatic and watershed 

characteristics. The latter includes elevation, slope, aspect, vegetation cover, and soil. 

The reason for developing models that are event-based is that, cold and warm-seasons 

water yields are hypothesized to be dependent on depth, duration and arrival time of 

precipitation events. Cold-season precipitation, in addition to the above factors, depends on 

the form in which precipitation comes, and the characteristics of the snowpack. For example, 

a spring rain storm on an existing snowpack is expected to produce more runoff than an 

early winter snowfall even though the amounts of the water equivalent of the two events are 

similar. This occurs because of the higher amount of water losses through evaporation and 

sublimation from an early cold season snowpack.  An event-based model can account for 

variations in water yield caused by different combination of storm depths, durations, inter-

arrival time, form of precipitation, and evaporation and snowmelt. A Geographical 

Information System (GIS) is used to analyze the effect of the spatial distribution of 
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watershed characteristics and other climatic variable affecting runoff. Variables important to 

determine runoff such as precipitation, temperature, elevation, slope, aspect, vegetation 

cover and soil type will not be averaged over a watershed as has been done in many 

previous studies.  

 The developed models are deterministic water yield models. The method uses GIS 

to subdivide the study watershed into 90 by 90 m cells assumed to be homogenous with 

respect to the previously mentioned physical and biological watershed characteristics. A grid 

of other dynamic variables such as solar radiation and temperature are also generated using 

GIS. Water yield is estimated using a water balance approach that accounts for important 

hydrologic processes such as canopy interception, evaporation, transpiration, snow 

accumulation, infiltration and subsurface storage.  The water balance model is applied to 

each cell to compute surface runoff from that particular cell. The precipitation simulated in 

the previous chapter of this study is the input for the runoff model. Appropriate 

mathematical equations are used to estimate the other outputs such as evaporation, 

transpiration, and infiltration. The output from each cell is then routed down stream in a 

cascading fashion to estimate the total amount of water coming out of the entire watershed.  

 

Literature Review 

  Snowmelt from a cold-season precipitation in the ponderosa pine type forest in 

north-central Arizona is the major sources of water yield. Therefore, previous studies on 

water yield from the ponderosa pine type forests of Arizona and New Mexico have focused 

on snow accumulation and melt and not rainfall. Further, more attention was given to 

enhancing runoff from winter snowmelt using various forest treatment techniques  
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(Barr, 1956; Ffolliiot et al., 1989; Rupp, 1995). These studies range from simple local 

observations of snow dynamics to attempts to present models that describe the amount of 

regional water yield from snow fall. 

  

Water Yield Studies 

Watershed management practices from the early 1940s through the beginning of 

the 1980s focused largely on increasing water yield through vegetation management on 

upland watersheds. Water yield improvement tests were conducted on experimental 

watersheds located mostly in Arizona (Ffolliott, et al., 2000). Various silvicultural 

treatments including clear cutting and conversions ffrom high water-consuming 

vegetation to low water-consuming types were tested.  

Studies demonstrated that the average long-term increase in water yield depends 

on a number of factors, such as amount of  precipitation, species being treated, site 

characteristics, intensity of treatment, size of area receiving treatment, re-growth rate and 

length of time between treatments (Stephens, 2003). In areas of higher elevation where 

precipitation is higher, the potential for increased yield is greater (Baker, 1982). In a 

precipitation-limited area such as ponderosa pine forest system, the possibility of 

increasing water yield through vegetation management is limited (Ffolliott and Thourd, 

1974; Stednick, 1996). Soil depth and composition influence the potential for increased 

water yield after forest treatment. The majority of watershed studies in the ponderosa 

pine type have showed changes in water yield on shallow, volcanic- derived soil types 

(Baker, 1986; Baker, 1999). Moreover, the intensity of vegetation treatment has an 

impact on the water yield from the watersheds. The result of 85 watershed studies in the 



 99

U.S. reviewed by Stednick (1996) showed that the changes in annual water yield that may 

occur due to harvesting of less than 20 percent of watershed area or forest cover was not 

significant. On the other hand, watershed research conducted in the Beaver Creek of 

Arizona showed that clear cutting of a watershed showed significant increase in water 

yield (Baker, 1982). Another factor to consider in predicting water yield after treatment is 

the rate of recovery of the vegetation (Desta and Telce, 2005), which will affect the 

amount of water flow. In the Beaver Creek watersheds, any increase in stream flow due 

to treatment disappears within seven years after the treatment mainly due to regeneration 

of understory vegetation (Tecle, 1991).     

 

Local Water Yield Studies 

The amount of snow converted to runoff depends in part on the amount of loss 

due to evaporation and sublimation (evapo-sublimation) processes. Interception loss 

refers to the amount of rainfall intercepted, stored, and subsequently lost by evaporation 

from a canopy. It is a significant and sometimes dominant component of 

evapotranspiration and can sometimes play a large part in the water budget of a 

watershed (Deguchi et al., 2006). However, time-lapse photography of intercepted snow 

in the ponderosa pine type forests of east-central Arizona shows that most intercepted 

snow eventually reaches the ground by mechanical processes such as snowslide and wind 

action or by stemflow and dripping of meltwater (Tennyson et al., 1974). However, forest 

cover does have an important influence on the rates of evapo-sublimation and melt of 

snow on the ground by reducing wind speed and by affecting short and long wave 

radiation. A forest canopy prevents some solar radiation and atmospheric long-wave 
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radiation from reaching a snowpack, and also prevents some short and long-wave 

radiation reflected and emitted from the snow pack from escaping the forest system. In 

addition, forest canopy serves nearly as a black-body, emitting long-wave radiation in the 

direction of the snowpack (Dingman, 1994, Rupp, 1995).  

The net result of the presence of forest cover is a reduction in evapo-sublimation 

rates (Ffolliott and Thorud, 1975). In eastern Arizona, Ashton (1966) found the average 

daytime evaporation rate from December to early May from an opening to be twice as 

large as from a ponderosa pine stand. In the case of snowmelt, empirical evidence 

suggests denser forest canopies result in lower melt rates. In an Arizona study on mixed 

conifer forest, snow melt rates were lower under dense canopies than under sparse or 

moderate canopies (Gottfried and Ffolliott, 1980). In the ponderosa pine forest of Arizona, 

Brown et al. (1974) and Baker (1986) noted an increase in water yield following a 

reduction in overstory. 

Another element which affects snowpack characteristics is the combined factor of 

slope and aspect. In the northern hemisphere, south-facing slopes typically receive more 

solar radiation than north-facing slopes. Studies in forested areas in Arizona found snow 

accumulation to be greater and snowmelt to be slower on �cool� sites than on �warm� 

sites (Ffolliott and Hansen, 1968; Hansen and Ffolliott, 1968: Ffolliott and Thorud, 1969, 

1972), where a site is defined as �cool� or �warm� depending on its slope, aspect, forest 

cover, and ambient temperature. 

A number of models have been developed to predict water yield from the 

ponderosa pine type forests of Arizona and New Mexico. All models had the aim of 

determining the effects of forest management using a paired of treated and control 
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watersheds. Some of the models are regression equations (Ffolliott and Thorud, 1972; 

Brown et al., 1974; Rogers et al., 1984; Baker, 1986), while others are combined 

physically /empirical models of water yield (Rogers, 1973; Solomon et al., 1976; Rogers 

and Baker, 1977; Ffolliott and Guertin, 1988). Other models which are worth nothing but 

are not designed specifically for the particular regions are those of Leaf and Brink 

(1973b), Leavesly (1973), and Combs et al. (1988).  

Baker-Kovner model (Brown et al., 1974) was the first regression equation for the 

Beaver Creek area used to directly estimate annual water yield from a forested watershed. 

The regression equation used four predicting variables including total winter precipitation, 

tree basal area, a slope/aspect index, and the potential direct-beam solar radiation at 

1200h on February 23 (Brown et al., 1974). The Baker-Kovner model took only the 

winter precipitation while assuming insignificant contribution of runoff from summer 

precipitation.  

  A modified form of the Baker-Kovner model is the water yield model in ECOSIM 

(Rogers et al., 1984). Both models, the Baker-Kovner and ECOSIM, have the same 

inputs such as total winter precipitation, tree basal area, a slope/aspect index, and 

potential insolation. In addition, the ECOSIM model includes a threshold precipitation 

level, below which water yield is zero, and a basal area threshold, above which no 

changes in tree density significantly affect water yield. The model assumes that water 

yield can be expressed as the yield from an untreated watershed plus the additional water 

yield resulting from basal area below a threshold value (Rogers et al., 1984). 

 The model of Baker (1986) consists of regression equations which are watershed-

specific. The equations describe changes in annual water yield on a watershed following 
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a certain forest treatment. The model variables are annual flow from untreated or control 

watershed, and  time in years since treatment. 

Ffolliott and Thorud (1972) developed regression equations for predicting 

snowpack accumulation from knowledge of basal area, timber volume and potential 

direct-beam solar radiation. Knowledge of snowmelt runoff efficiency of the watershed 

would then, in theory, allow for estimating the portion of snowpack that becomes stream 

water. Solomon et al. (1975a, 1975b) derived snowmelt-runoff efficiencies for small, 

upland watersheds characterized by mixed conifer forests, mountain grass lands, and 

ponderosa pine forests. The study was carried out in fourteen experimental watersheds 

located in �snow-zone" areas in Arizona. A regression equation relating the snowmelt 

runoff efficiency with ten inventory prediction variables was set up. They found out that 

snowmelt runoff efficiency is related significantly with timing of precipitation, total 

seasonal precipitation, and forest cover.  

Other models which simulate the effects of forest management on water yield but 

are not simply regression equations are Yield II (Ffolliott and Guertin, 1988), the model 

in Rogers (1973), ECOWAT (Rogers and Baker, 1977), SNOWMELT (Solomon et al., 

1976), the models in Leavesly (1973) and Leaf and Brink (1973b), and WTRYLD 

(Combs et al., 1988). The first three were specifically designed for the forests of Arizona 

and New Mexico, while the latter three were not. 

YIELD II is a computer based water yield model designed in terms of water 

budget scheme and integrating many important hydrological processes (Ffolliott and 

Guertin, 1988). The model was used for both winter and summer seasons and predicts 

daily values of hydrologic processes including runoff, interception, evapotranspiration, 
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infiltration, change in soil moisture storage, and deep seepage. To analyze the effects of 

forest management on water yield, YIELD II describes evapotranspiration and 

interception as a function of basal area. Snowmelt is simulated with a degree-day method, 

though the amount of snowmelt that appears at the watershed outlet requires knowledge 

of the snowmelt runoff efficiency for that specific watershed.   

Rogers (1973) designed a water yield model to be sensitive to vegetation 

management. The model design consists of a procedure for energy and water balance 

computation that accounts for hydrologic processes such as canopy interception, 

snowpack water and energy balance, litter layer water balance, surface water and soil 

water balance, and the routing of overland flow, interflow and channel flow. A study by 

Brown et al., (1974) which tested the model on two of the Beaver Creek experimental 

watersheds found that this model often failed to accurately predict the volume of flow 

though it was able to predict the time of snowmelt and the timing of peak flows relatively 

well. The same study concluded that likely sources of error were in the way the model 

estimated some climatic inputs that could not be measured directly and in its method of 

describing treatment effects.  

            Similar to the earlier model developed by Rogers (1973), ECOWAT is a water 

yield model design to consider all important hydrologic processes (Rogers and Baker, 

1977). The model uses a water balance approach and incorporates many validated 

previous models. ECOWAT contains sub-models for snow accumulation and melt, 

interception by vegetation and forest floor, transpiration, infiltration, overland flow, soil 

water and sub surface flow, and channel flow. A problem with the model is that it 

required 32 input parameters, which made it both difficult to use and test.  
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            SNOWMELT is the snowmelt component of the water yield model (WTRYLD) 

(Solomon et al., 1976). It is an adaptation to southwestern conditions of the snowmelt 

model called MELTMOD that was created by Leaf and Brink (1973a) for Colorado 

subalpine forests. The original model assumed a continuous snowpack (Leaf and Brink, 

1973b), but this becomes a major constraint when applied in areas such as Arizona, 

where the snowpack is intermittent. A modified snow component called SNOWMELT, 

developed by Solomon et al. (1976), provides for modeling intermittent snowpack 

conditions in Arizona and New Mexico. SNOWMELT requires daily inputs of maximum 

and minimum temperatures, precipitation, and solar radiation. Even though a separate 

testing of model was found satisfactory, it was never incorporated into a full water yield 

model. Though several other water yield models were tried in the ponderosa pine type 

forest, they were not implemented.  

            Hansen et al. (1977) attempted to determine the applicability of the runoff model 

developed by the US Geologic Survey (Leavesly, 1973) to the ponderosa pine type forest 

of Arizona. The results of the study, however, were inconclusive. Generally, the US 

Geologic Survey model and the MELTMOD seemed to have a problem of keeping the 

snowpack too cold during the mid-winter months and failed to predict any significant 

snowmelt during this period. 

            WATBAL which was developed by Leaf and Brink (1973b) and applied by 

Troendle (1979) used to develop procedures for predicting selected hydrologic impacts of 

silvicultural activities in snow dominated regions.  WTRYLD (Combs et al., 1988) was 

tested in the Colorado subalpine forests and the Sierra Nevada of California. Both models 

require some modification to be used in the ponderosa pine type forests of Arizona and 
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New Mexico. An attempt was made to do so for the snowmelt component of WATBAL 

(Solomon et al., 1976). However, there has never been a real effort to use WTRYLD in 

the southwest. The problems of WTRYLD are: the model requires variables that are 

difficult to obtain, it uses a trial and error model fitting procedure, which makes it 

difficult to reliably test its transportability to other areas (Tecle, 1991).  

            As it was discussed previously, the main objective of most of the models 

described above is to know the impact of vegetation management on water yield. Studies 

such as those of Brown et al. (1974), Baker (1982, 1986) and Rupp (1995) in the 

ponderosa pine type suggested that the two major hydrologic processes influencing the 

timing and volume of the cold-season stream flow, which are most sensitive to vegetation 

manipulation, are evapotranspiration and snowmelt. Because of this, recent advances in 

the modeling of these processes are discussed below. For a review of the modeling of 

other processes involved in runoff generation in forests, with particular attention given to 

infiltration and subsurface flow, see Bonell (1993). 

 

Evapotranspiration Modeling 

            Evapotranspiration is the major component of water balance in a forested 

watershed and accurately quantifying it is critical to predict the effects of forest 

management and global change on water and nutrient yield (Jianbiao et al., 2003). 

Evapotranspiration has always been difficult to measure, especially on an ecosystem or 

watershed spatial scale. Methods have been developed to measure evapotranspiration at a 

leaf level, the tree level and the stand level (Fisher et al., 2005). Evapotranspiration is one 

of the most difficult processes to evaluate in a hydrologic analysis. Estimates are 
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generally considered to be a significant source of error in stream flow simulation (Kolka 

and Wolf, 1998; Fisher et al., 2005). Hence potential evapotranspiration at a watershed 

level in most cases is estimated using empirical or physical approaches that take into 

account the different climatic variables. Some temperature based methods are: 

Thornthwaite (Thornthwaite and Mather, 1955), Hamon (1963), and Hargraves-Samani 

(1985). Others energy, or radiation-based methods such as Penman-Monteith (1948), 

Turc (1961), Makkink (1957), and Priestley and Taylor (1972). Many recent 

evapotranspiration models use an energy balance that accounts for the effects of 

environmental conditions on stomatal resistance to molecular diffusion of water. Such 

models are those of Dickinson et al. (1986), Sellers et al. (1986), Running and Caughlan 

(1988), Stewart (1988), Famiglietti (1992), Famiglietti and Wood (1994), Wigmosta et al. 

(1994), Fisher et al., (2005).  

            Typically, the energy sources involved are net radiation flux, latent heat flux, and 

sensible heat flux, while more compressive models include soil heat flux and change in 

energy storage in the vegetation. When only the first three energy sources are accounted 

for, the Penman-Monteith approach provides a convenient and well-tested method of 

estimating evapotranspiration (Dickinson et al., 1991; Dingman, 1994). Two examples of 

studies which successfully include the Penman-Monteith equation in water balance 

scheme for vegetated surface are those of Running and Coughian (1988) and Wigmosta 

et al (1994). 

            Despite the different models used by various researchers mentioned above, all of 

these models incorporate canopy conductance (often referred to the reciprocal of canopy 

resistance). Canopy conductance is a measure of stomatal resistance of a canopy to 
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transpiration and it has the effect of reducing the rate of evapotranspiration from the 

potential rate (Rupp, 1995). What the models of Dickinson et al. (1986), Sellers et al. 

(1986), Running and Caughlan (1988), Famiglietti and Wood (1994), and Wigmosta et al. 

(1994) all share in common is that when the vegetation surface is wet, they set the canopy 

conductance to be  infinity (resistance to zero). Shuttleworth (1975) gives theoretical 

support for this practice, while Stewart (1977) provides empirical evidence that the 

canopy resistance of a completely wet pine forest is near zero. 

            Though conceptually similar, all the above models differ in specifics in how they 

determine the canopy conductance when the vegetation surface is dry. For all the models, 

and the general equation for canopy conductance, Ccan, can be represented by  

  

   Ccan = LAIt Cleaf f(T) f(H) f(PAR) f(Sw) f(CO2)  f(Nut)                                                (3-1) 

 

Where Cleaf is the species specific maximum leaf conductance, LAIt, is the leaf area index, 

and the f�s represents functions of environmental variables that limit the canopy 

conductance from its maximum value (Dicknson et al., 1991). The environmental 

variables that can affect the canopy conductance include temperature (T), absolute 

humidity deficit (H), photosynthetically active radiation flux (PAR), water stress (Sw), 

and carbon dioxide (CO2) and nutrient (Nut) availability (Dickinson et al., 1991).  

            Each one of the models mentioned above uses different expressions for each of 

the first four limiting functions in equation (3-1), while carbon dioxide and nutrient 

availability are ignored. However, Jarvis (1976) found that stomatal conductance is 

affected primarily by quantum flux density, ambient carbon dioxide, specific humidity 
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deficit, leaf temperature, and leaf water status. Using the finding of Jarvis (1976) as a 

basis, Stewart (1988) successfully simulated evapotranspiration rates in a pine forest 

using the Penman-Monteith approach with the canopy conductance dependent up on air 

temperature, absolutely humidity deficit, solar radiation, and soil moisture deficit. Carbon 

dioxide was excluded because there was very little change in available carbon dioxide 

during the study. 

 

Snowmelt Modeling  

            Modeling of snowmelt typically involves the use of either an energy-balance 

approach, or an index method, where the index is most commonly air temperature (Gray 

and Prowse, 1992). Ohmura (2001) favored the temperature-index method rather than 

energy method due to three reasons: 1) simple and good performance in accuracy, 2) 

availability of air temperature data, and 3) easy spatial interpolation of air temperature. 

However, some studies have shown that the two approaches can be combined to 

successfully estimate daily snowmelt (Martinec, 1989; Kustas et al., 1994).  

            The energy-balance approach is constructed to describe the sources of energy flux 

into a snowpack. The net energy flux is taken to be the sum off the energy due to 

radiation, convection, conduction, advection, and the change in internal energy of the 

snowpack. The general formula of the energy balance equation (all in kJm-2hr-1) is: 

 

mehlegplisn QQQQQQQQ
dt

dU −++−+++=                                                           (3-2) 
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Where 
dt

dU = the amount of energy available for snowmelt 

             snQ  = net shortwave radiation, 

              liQ  = incoming longwave radiation, 

              pQ  = advected heat from precipitation,  

              gQ  = ground heat flux 

              leQ  = outgoing longwave radiation  

                   hQ  = sensible heat flux 

              eQ = latent heat flux  

               mQ = advected heat removal by melt water (Tarboton et al., 1995) 

           In many cases the energy balance approach is not justified due to time, input, or 

computational restrictions and desired accuracy (Tarbotonet al., 1995). The data 

requirements become practically impossible to fulfill especially when simulating 

snowmelt over an entire watershed (Dingman, 1994). 

              A much simpler approach is the temperature-index, or degree-day method. The 

temperature index snowmelt model has been the most popular for most basin modeling 

approaches (Ward and Elliot, 1995). It is commonly expressed as  

 

                       M = K (Ta-Tb)                                                                                           (3-3) 

 

Where M is melt for the day (in units of depth), K is the degree-day conversion factor 

(units of depth divided by temperature), Ta is the average air temperature, and Tb, is the 

base temperature, usually taken as the melting point of snow, 0 oC (32 oF)  (Ward and 
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Elliot, 1995). One drawback to the temperature-index is that the degree-day convertion 

factor, K, is highly variable both temporarily and spatially and in practice the degree-day 

factor must be empirically calculated for different sites and times of the year (Rupp, 

1995).  

            To deal with the spatial and temporal variability in snowmelt which is not 

accounted for by temperature alone, the use of a combination of the degree-day method 

and radiation budget approach has been proposed (Martinec and de Quervain, 1975; 

Ambach, 1988; Martinec, 1989: Kustas et al., 1994). Kustas et al. (1994) selected net 

radiation because previous studies have shown it to explain for most of the variation in 

snowmelt (Zuzel and Cox, 1975; Granger and Male, 1978; Marks and Dozier, 1992). The 

form of the combined equation as shown in Kustas et al. (1994) is  

 

                             M = krTa+mqRn                                                                                 (3-4) 

 

Where = kr is called the restricted degree-day factor, Rn is the net radiation at the surface 

of the snowpack, and the other terms are as described above. Martinec (1989) finds the 

variability in kr to be much less than that of the degree-day conversion factor, k, in 

equation (3-3). Kustas et al. (1994) find that equation (3-4) provides improved results 

over the simple degree-day method when compare to lysimeter outflow measurements. 

And the results are in good agreement with those of an energy-balance model. 
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Methods 

Water Balance 

             One of the best ways of characterizing the hydrology and water resources of an 

area is using a water balance approach. This is because the approach includes all aspects 

of hydrology and other important factors that affect the system.  The water balance is 

expressed in the form of a continuity equation that describes the relationship between 

inputs, outputs and any change in storage. Furthermore, the input and output parts are 

expressed in terms of many variables representing the different factors contributing to 

each part.  The components of the water balance model consist of hydrologic processes 

such as precipitation, canopy interception, evaporation, transpiration, snow accumulation 

and melt, infiltration and soil water storage. The general expression for the water balance 

model used in this study is  

                         TERP
t
S −−−=

∆
∆                                                                               (3-5) 

Where
t
S

∆
∆  is the change in storage with time in the soil or vegetation system, P is the rate 

of precipitation, R is net runoff rate, E is evaporation rate, and T is transpiration rate all in 

units of cm hr-1. In this equation precipitation represents the input while the other terms 

on the right hand-side of the equation are the hydrologic outputs from the watershed 

system. Any loss of water from the watershed system as groundwater flow to distant 

water table below is assumed to be negligible and is not included in the water balance 

analysis. Before analyzing the various components of the water balance model, the 

different physical and vegetative characteristics that influence the behavior of the above 

water balance model components will be discussed.    
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 Describing watershed characteristics  

             The spatial distributions of the physical and biological characteristics of the study 

watershed are described using GIS. The watershed is divided into 24,733 cells of size 90 

by 90 m, on the basis of the different watershed characteristics, using the raster-based 

component of the ARC/INFO GIS called GRID. An individual cell is assumed to be 

homogeneous over its 8,100 m2 with respect to the different watershed characteristics.  

           For the purpose of analysis, watershed characteristics may be considered as either 

static or dynamic. The static characteristics are elevation, slope, aspect, soil, and 

vegetation cover. Though vegetation cover is not static, it is assumed to be the same 

throughout the seasons. On the other hand, the dynamic watershed characteristics are 

precipitation, temperature, net radiation, evapotranspiration, soil moisture content, 

infiltration, snow accumulation and melt, and runoff. 

              The boundary of the watershed is taken from the Beaver Creek watersheds map 

data archive (http://ag.arizona.edu/OALS/watershed/beaver/geology.html, April 2, 2005). 

The elevation data were obtained from the 7.5� USGS DEM (digital elevation model) that 

represents the areal images for Arizona (http://landsat.ece.arizona.edu/, accessed May 10, 

2005). The elevation data for the watershed are then created by clipping out the 

watershed boundary from the surrounding quad maps. The original data have a horizontal 

resolution of 30 m but were converted to 90 m to fit with other watershed data. In the 

elevation map, it is assumed that the elevation value of a particular cell will be 

representative of the entire cell having, all points in the cell has the same elevation value 

as the center point. 
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               The distribution of soil types is obtained from the vector data set of the 

Terrestrial Ecosystem Survey (TES) for the Coconino National Forest (USFS, 1992). The 

soil information for the study area only is acquired by clipping out Bar M watershed 

using the watershed boundary. The soil vector layer was then converted to grids of soil 

types.  

The other static watershed data, which include slope, aspect, overstory cover, and stand 

height are generated using the same method from Forest ERA (Ecosystem Restoration 

Analysis) GIS map database for the Western Mogollon Rim area 

(http://www.forestera.nau.edu., 2005). Dynamic watershed characteristics such as 

precipitation and temperature are taken from the simulated results in the previous chapter.          

 

Construction of  Water Balance Model 

A water balance model is developed for both the cold and warm seasons to 

estimate runoff from the watershed by determine the various inputs and outputs. The 

individual components of the cold and warm seasons water balance models described in 

this section include the processes of precipitation, interception, evaporation, transpiration, 

infiltration, and runoff. Besides these components, snow melt is calculated for winter 

season. In addition to these hydrologic processes, a radiation balance is also discussed 

because it plays an important role in the estimation of evaporation, transpiration, and 

snowmelt. 

Radiation 

The model computes a daily radiation balance for each cell in the watershed for 

the cold and warm seasons. The net radiation balance consists of both long-wave and 
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short-wave components, which are computed separately. Also, net radiation is 

determined for both the overstory and the ground. The first step in the process consists of 

determining the net short-wave radiation to estimate the incoming solar radiation 

(insolation) for each cell in the watershed. The model requires as input a value of the 

daily insolation striking a horizontal surface. This insolation value is multiplied by a 

slope factor to obtain an estimate of the daily insolation received by a non-horizontal 

surface. The slope factor is a function of the day of the year, the slope, aspect, and 

latitude of a given cell in the watershed. The slope factor is computed using the algorithm 

in Swift (1976) and adopted by Rupp (1995). The average total daily solar radiation 

received on a horizontal surface at 34o 55' N latitude, 111o 38' W longitude and elevation 

1,977 m 32 km south of Flagstaff near the study site is taken as insolation values from 

Campbell and Stevenson, (1977) (See Table 3A-2 in Appendix 3A).  

 The net short-wave radiation at the surface is calculated in a way similar to that 

in Wigmosta et al. (1994), in which a radiation balance is determined for both the 

overstory and ground. One difference is that Wigmosta et al. (1994) computes the net 

radiation for both an understory and a ground surface, while in this study the understory 

and the ground surface are lumped together as ground. This is done because the sparse 

understory is assumed to not significantly affect the radiation balance, nor contribute 

significantly to the evapotranspiration, thus the added complexity of an extra layer is not 

necessary. The net short-wave radiation for the overstory is determined using  

 

                       FRR goosso )]1()1[( ατα −−−=                                                               (3-6) 
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Where soR = net short-wave overstory radiation (cal cm-2 s-1) 

            sR =  insolation (cal cm-2 s-1) 

            oα = albedo of overstory, 

             oτ = fraction of short-wave transmittance through overstory,  

             gα = albedo of ground and  

              F = overstory cover as a fraction of total surface area. 

The albedo for snow sα is used in place of the albedo of the overstory or the ground when 

either is covered with snow (Wigmosta et al., 1994). The albedo for ground is assumed to 

be 0.15, and for the overstory 0.18 while snow is assumed to have an average value of 

0.63 (Burman and Pochop, 1994). As in Wigmosta et al. (1994), short wave radiation is 

attenuated through the overstory using Beer�s law (Monteith and Unsworth, 1990) to 

obtain the short wave transmittance fraction ( oτ ): 

                          

                           pkLAI
o e−=τ                                                                                            (3-7) 

 

Where k  is the overstory attenuation coefficient (0.5) and pLAI is the projected leaf area 

index of the overstory, in this case ponderosa pine which as the leaf area index value of 

6.5 (Barnes et al., 1998). According to Wigmosta et al. (1994), the net short-wave 

radiation at the ground sgR is determined using  

                

                  )]1()[1( FFRR ogssg −+−= τα                                                                     (3-8) 
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Where all the terms are as described in equation (3-6). 

  Computation of the long-wave radiation balance is also done similar to that in 

Wigmosta et al. (1994). At the overstory, the net-long wave radiation is calculated as: 

 

                FLLLR ogdlo )2( −+=                                                                                  (3-9) 

 

Where  loR is the net overstory long-wave radiation, dL is the downward long-wave 

radiation (from the sky), gL is the long-wave radiation emitted from the ground,  and oL  

is the long-wave radiation emitted from the overstory. At the ground, the net long-wave 

radiation is computed using:  

 

            gdo LFLFLR −−+= )1(lg                                                                                (3-10) 

  

Where lgR  is the net long-wave radiation at the ground and the remaining terms are as 

described in equation (3-9).  

      It is assumed that the ground and the overstory emit radiation as black bodies. 

Therefore, according to Wigmosta et al. (1994), the radiation emitted from the ground 

and the overstory are calculated using equations (3-11) and (3-12) 

 

                         4)3.273( += gg TL σ                                                                            (3-11) 

and 

                           4)3.273( += oo TL σ                                                                           (3-12) 
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Whereσ  is the Stefan-Boltzman constant, which is equal to 1.355X10-12 ca cm-2 s-1 oC-4 

and gT and oT are the ground and overstory temperatures respectively. The temperature of 

the overstory is assumed to be equal to the air temperature. The air temperature was 

simulated in the second chapter. However, the ground temperature is determined by 

creating a relationship between the measured air temperature and ground temperature 

from 1995 to 2005 data and using this relationship to estimate the simulated ground 

temperature.. 

Downward long-wave radiation ( dL ) is estimated according to Brutsaert (1975) 

and Sugita and Brutsaert (1993). For the model in this study, clear-sky conditions are 

assumed for days when there is no precipitation. Therefore, on days of no precipitation, 

the downward long-wave radiation ( dcL ) is determined using:  

 

                      4)3.273( += adc TL εσ                                                                           (3-13) 

 

Whereε  is the atmospheric emissivity and aT  is the air temperature. As in Brutsaert 

(1975), the atmospheric emissivity is estimated by 

 

                 b
aTea )]3.273/(01.0[ +=ε                                                                       (3-14)  

 

Where e is the atmospheric vapor pressure, and a and b are constants. On the day in 

which precipitation occurs, the sky is assumed to be completely overcast. According to 
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Sugita and Brutsaert (1993), the downward long-wave radiation during a completely 

overcast day )( doL can be approximated by dcdo LL 1.1= . 

 

Interception 

The overstory is assumed to intercept all precipitation until the maximum 

interception storage capacity is reached (Wigmosta et al., 1994). Accordingly, the change 

in interception storage, S∆ , under this condition is estimated by  

                            

                                           EPPS −=∆                                                                      (3-15)  

 

Where P  is the interception rate (cm s-1), and EP  is the potential evaporation rate  

(cm s-1). During the period before maximum interception storage capacity, maxS , is 

reached, the rate of precipitation reaching the ground, gP , is zero. After maximum 

interception storage capacity is reached, the precipitation rate reaching the ground is 

determined by 

                                    EPPPg −=                                                                               (3-16) 

 

As in Dickinson et al. (1991) and Wigmosta et al. (1994), the maximum interception 

storage capacity, maxS (cm), is estimated using  

                          

  FLAIS p01.0max =                                                                               (3-17) 

for both rain and snow. 
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Evaporation  

Evaporation can occur from either the water stored as interception on the 

overstory canopy, or from the water stored in the snow pack. In either case, a potential 

evaporation rate is assumed. The Penman-Monteith equation is used to determine the 

potential evaporation rate (Dingman , 1994). The Penman-Monteith equation is expressed 

as 

                        
)( γλρ

ρ
+∆

∆+∆
=

vw

ataan eCCR
EP                                                                       (3-18) 

 

Where EP  = potential evaporation rate (cm s-1),  

            ∆  = slope of saturation vapor pressure vs. air temperature (mb o C -1), 

            nR  = net radiation (cal cm-2 s-1), 

            aρ = density of air (g cm-3), 

            aC = heat capacity of air (cal g  o C-1), 

            atC = atmospheric conductance (cm s-1),  

            e∆ = vapor pressure deficit (mb), which is equal to the saturated vapor pressure  

                  defecit ( se ) minus actual vapor pressure (e )  

            wρ = density of water (g cm-3), 

            vλ  = latent heat of vaporization (ca g-1), and  

             γ  = Psychrometric constant (cal g -1) 
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The atmospheric conductance ( atC ) is a function of the prevailing wind speed and the 

height of the vegetation in the area. As in Dingman (1994), the canopy conductance is 

computed using:  

                2)/)(ln[25.6 odm

a
at ZZZ

V
C

−
=                                                                      (3-19) 

 

Where- aV = wind speed (cm s-1), 

            dZ = 0.7 vegZ  (m), 

            oZ = 0.1 vegZ    (m),  

            mZ  = height of wind speed measurement (m), and  

            vegZ = height of vegetation (m). 

The net radiation ( nR ) is the sum of the short-wave and long-wave components of 

radiation for either the overstory or ground, which are given in equation (3-6), (3-8), (3-9) 

and (3-10). The description of the remaining variables in equation (3-18) is found in 

appendix 3A.   

 

Transpiration  

Transpiration can occur when there is no water stored in the canopy. In this case, 

it is assumed that, during winter only the evergreen species of the canopy (i.e. ponderosa 

pine) transpire. Transpiration rates are determined using the Penman-Monteith equation 

with the inclusion of a canopy resistance term ( canC ) (Dingman, 1994). In this case the 

Penman-Monteith equation for transpiration rate (Tr ) is expressed as 
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)]/1([ canatvw

ataan

CC
eCCR

Tr
++∆

∆+∆
=

γλρ
ρ

                                                                               (3-20) 

  

Where all the terms except the canopy conductance ( canC ) are described in equations (3-

18) and (3-19).  

The canopy conductance can be expressed as a function of environmental 

characteristics, as well as characteristics of the transpiring species (Jarvis, 1976; Stewart, 

1988; Dingman, 1994). As in Stewart (1988) and Dingman (1994), the canopy 

conductance is considered to be a function of the maximum leaf conductance of the tree 

species, the total leaf area index, the net short-wave radiation, the absolute humidity 

deficit of the air, the air temperature, and the soil moisture. In terms of these variables, 

the equation for canopy takes the following form:  

     

     )()()()( θρ fTffRfCLAIC avsoleaftcan ∆=                                                                (3-21) 

 

Where tLAI is the total leaf area index, leafC  is the maximum leaf area conductance, and 

the last four terms, in order, are functions describing the relationship between canopy 

conductance and the net short-wave radiation ( soR ), absolute humidity deficit ( vρ∆ ), air 

temperature ( aT ), and soil moisture content (θ ) (Dingman, 1994).  

 The short-wave radiation function in equation (3-21) is expressed as  

 

          
4.10441870

46225
)(

+
=

so

so
so R

R
Rf                                                                                 (3-22)   
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for 0< soR <0.0239 cal cm-2 s-1, )( soRf  equals 1 for soR >0.0239 cal cm-2 s-1 (Stewart, 

1988). The absolute humidity deficit function in equation (3-21) can be written as  

       

 vvf ρρ ∆−=∆ 0666.01)(                                                                                        (3-23) 

 

for 0< vρ∆ <11.52 g m-3  and )( vf ρ∆  equals  0.233 for vρ∆ >11.52 g m-3  (Stewart, 

1988). The temperature function in equation (3-20) is expressed as  

 

                
691

)40(
)(

18.1
aa

a
TT

Tf
−

=                                                                               (3-24) 

 

for 0< aT < 40 oc and )( aTf  equals  0 for aT >40 o C (Stewart, 1988). 

The soil moisture function is expressed as  

             
wpfc

wpf
θθ

θθ
θ

−
−

=)(                                                                                        (3-25) 

Where θ  is the average soil moisture content in the soil column, wpθ  is the wilting point, 

and fcθ is the soil moisture content above which transpiration is not soil-moisture limited, 

and under this condition )(θf  equals unity. For this study, this value is assumed to be 

equal to the field capacity of the soil. When the soil moisture content falls below the 

wilting point, however, )(θf  is set to zero. The soil moisture content in equation (3-25) 

is given as ratio of the actual soil moisture to the maximum soil moisture capacity. 
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Infiltration 

Infiltration is determined using the Green-Ampt equation developed by Green and 

Ampt (1911). The Green-Ampt model is also based on the assumption that during 

infiltration the soil column is saturated behind the wilting front and that soil moisture 

component ahead of the wetting front equal to the antecedent soil moisture content which 

is considered to be distributed uniformly throughout the profile. For the purpose of this 

study, transport of water is assumed to occur in the vertical direction only and the soil 

column is treated as a single layer resting atop an impervious boundary.  

Infiltration into the soil column can occur during periods of rainfall, snowmelt, or 

a combination of the two. Dingman (1994) describes three different cases for determining 

the rate of infiltration. These three cases depend upon the rate at which water is reaching 

from above, the time it takes for ponding to begin on the soil surface, and the time taken 

for the entire soil column to become completely saturated.  

Case 1 occurs when the rate at which water is reaching the soil surface from 

above , ( w ) (cm hr-1) is less than the saturated hydraulic conductivity of the soil, satK  

(cm hr-1). In this case no ponding of water on the soil surface occurs. Under this condition 

the rate of infiltration (i) is assumed to be w while the time it takes (in hours) for the 

entire soil column to become saturated (tsat) can be determined using 

                       

          wZt oscsat /)( θφ −=                                                                                             (3-26) 

 

Where scZ is the depth of the soil column (cm), φ  is the saturated water content of the 

soil, and oθ is the initial water content of the soil (Dingman, 1994). If satt  is less than the 
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duration of the event in hours that brings water to the soil surface from above ( ft ), then 

the water content (θ ) of the soil becomes the saturated water content (φ ) at time satt , 

after which infiltration ceases. If the soil column does not become saturated, or satt  is 

greater than ft , then all the water infiltrates and the final water content of the soil is 

estimated using 

 

      )/()( scfof Zwtt +=θθ                                                                                            (3-27) 

  

Where )( ftθ  is the final water content of the soil and the other terms are as described 

above. 

Case 2 refers to the condition in which the rate at which the water is reaching the 

soil surface from above ( w ) is greater than the saturated hydraulic conductivity of the 

soil ( satK ), and when the time it takes for the soil column to become saturated  ( satt ), is 

less than the time to ponding ( pt ). The time to saturation is found from equation (3-26) 

above, while the time to ponding can be calculated using 

 

      
)(

)(

sat

ofsat
p Kww

K
t

−

−
=

θφψ
                                                                                              (3-28) 

 

Where fψ is the effective tension at the wetting front (cm) (Dingman, 1994), all other 

terms are as described previously. 
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The determination of the infiltration rate for case 2 turns out to be the same as for case 1. 

When the duration of the event ( ft ) is greater than the time it takes for the entire soil 

column to become saturated (see equation 3-26), the final soil water content is the 

saturated water content (φ ). Under this condition, the infiltration rate, i  (cm hr-1) equals 

w  before saturation and becomes zero when the soil is saturated. However, when the 

entire soil column does not reach saturation, or ft is less than satt , then the final soil water 

content is determined using equation (3-27) and the infiltration rate remains at w  

throughout.  

Case 3 occurs when the rate of precipitation ( w ) is greater than the saturated 

hydraulic conductivity ( satK ) and when the time it takes for the entire soil column to 

become saturated ( satt ) is greater than the time to ponding ( pt ).  The time to ponding is 

determined using equation (3-28). The time to saturation in this case is dependent on a 

rate of infiltration that decreases with time following ponding. This time to saturation is 

represented by  
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                                 (3-29) 

 

Where )( sattI  is the total amount of infiltration (cm) at the time of saturation and                        

)( ptI  is the total amount of infiltration (cm) at the time of ponding (Dingman, 1994). 

The total amount of infiltration at the time of ponding is pwt  and the total amount of 

infiltration at the time of saturation is )( oscZ θφ − .  
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 When the precipitation event lasts longer than the time to saturation, or ft  is greater than 

satt , then the final soil moisture content is the saturated soil moisture content (φ ). When 

the event duration ( ft ) is less than the time of ponding ( pt ), the final moisture content is 

calculated using equation (3-27). In this case, the infiltration rate before the time of 

ponding ( pt ) equals w , and the rate becomes zero after the time of saturation. 

When the precipitation even duration is greater than the time of ponding ( pt ) and less 

than the time of saturation ( satt ), then the final soil moisture content is calculated using 

equation (3-30) which is 

                      

                        scfof ZtIt /)()( +=θθ                                                                           (3-30)  

 

where )( ftI  is the total amount of infiltration at the end of the event. The solution of the 

total amount of infiltration, I , requires the integration of the Green-Ampt equation, 

which can be expressed as 
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                                                                         (3-31) 

 

 This is valid for t  grater than pt (Dingman, 1994). 

 The solutions for the infiltration rate ( i ) and the total infiltration rate ( I ) are determined 

using a series of approximations to equation  (3-31) developed by Salvucci and Entekhabi 



 127

(1994). In this manner, equation (3-32) is constructed to approximate the infiltration rate 

( 'i ) at time t. 
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Where x  equals satof K/)( θφψ −  (Salvucci and Entekhabi, 1994), and all other 

variables are as explained previously. 

       Thus the approximate total infiltration ( 'I ) at time t  can be estimated using equation 

(3-33), which is the result of integrating equation (3-32) with respect to time.  
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Equation (3-32) and (3-33) are valid only for ponded conditions. Considering for the 

period befor ponding, the total amount of infiltration at the end of the precipitation event 

is expressed as  

          ppff wttItItI +−= )(')(')(                                                                                 (3-34)  

Table 3.1 summarizes the three cases in which infiltration occurs discussed above. The 

table shows the different infiltration rates and the different final soil moisture contents for 

various combinations of precipitation rates, precipitation durations and antecedent soil 

moisture conditions.    
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Table 3.1 Three cases of infiltration  

 
Case Condition Soil moisture Infiltration 
1. satKw <   See equation 3-26 for satt   
a. satf tt >  φθ =)( ft  When ;, witt sat =<  

When ;0, => itt sat  
 

b. satf tt <  scfof Zwtt /)( +=θθ  wi =  
 

2. satKw > ; 

psat tt <  
 (See equ. (3-26) for satt ) 

 
a. satf tt >  φθ =)( ft  When ;, witt sat =<  

When ;0, => itt sat  
 

b. satf tt <  scfof Zwtt /)( +=θθ  wi =  
3. satKw >  

psat tt >  
 (See equ. (3-29) for satt ) 

 
a. satf tt >  φθ =)( ft  When ;, witt p =<  

When 
=<< ittt satp , decreasing 

 
When ;0, => itt sat  
 

b. satfp ttt ><  scfof ZtIt /)()( +=θθ  
(see equation (3-34) 
for )( ftI ) 

When ;, witt p =<  
When  

=> itt p , decreasing 
 

c. pf tt <  scfof Zwtt /)( +=θθ  wi =  
 

Snow melt 

The expression for snowmelt is constructed by combining the commonly-used 

temperature index, or degree-day method with a limited surface energy budget. The 

limited surface energy budget includes the surface radiation budget and the energy 
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advected to the snowpack by precipitation. During days of no rainfall, a computation of 

snowmelt employs the equation used by Kustas et al. (1994), which takes the form  

  

                       nqavgr RmTaM +=                                                                                  (3-35) 

 

Where M = daily snow melt depth (cm)  

             ra = restricted degree day factor (cm d-1 o C -1), 

            avgT = daily average temperature (o C) 

             qm = the convertion factor for energy flux density to snowmelt depth  

                      (cm d-1(cal cm-2 d-1)-1), and  

             nR = daily net radiation (cal cm-2 d-1) 

In the current study, rain-on-snow events are accounted for by adding the energy 

advected by the rain ( rQ ) to the right hand side of equation (3-35) to get 

               

                )( rnqavgr QRmTaM ++=                                                                             (3-36) 

 

The energy advected by rain ( rQ ) in units of cal cm-2 is calculated using  

                       

           rrwwr PTCQ ρ=                                                                                       (3-37) 

 

Where wρ is the density of  water (g cm-3), wC  is the heat capacity of water  
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(cal g-1 o C -1), rT  is the rain temperature (o C), and rP  is the depth of rain (cm). The rain 

temperature is assumed to be equal to the air temperature. 

 

Runoff 

The surface runoff consists of the rainfall reaching the ground ( gP ) and/or the 

snowmelt ( M ) that neither evaporates ( EP ) nor infiltrates ( I ) into the soil. The net 

surface runoff ( iR ) in unit of centimeters from a cell i is determined using  

       

                iiigii EPIMPR −−+=                                                                                 (3-38) 

 

The values for the right-hand side components of equation (3-38) are determined 

separately using the different modules discussed above.  

Surface runoff can enter a cell from any of eight possible adjacent cells, though 

no cell can be fed by more than seven adjoining cells at once because one cell must 

remain as the outflow cell. With restrictions like these imposed on surface flows into and 

out of a cell, each cell can be thought of as the outlet cell of a sub-basin, where the sub-

basin is composed of as little as one cell or up to as many cells as there are in the entire 

watershed. Therefore, the total runoff in a cell is an accumulation of the runoff generated 

from that cell plus the runoff generated from all the contributing sub-basin cells upstream. 

If a sub-basin is composed of n cells, then the runoff leaving the nth cell or outlet cell, can 

be expressed as 

            ∑
−

=
+−−+=

1

1

n

i
innngnn REPIMPR                                                                     (3-39) 
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This assumes that the components of the water budget (i. e. evapotranspiration, 

infiltration etc.) on any given cell are independent of the processes operating on any other 

cell. Surface runoff is routed downstream from cell to cell in a cascading fashion. The 

surface water yield from the entire watershed is considered to be the cumulative total 

runoff at the watershed outlet cell. 

 

Results 

  The water balance model was developed on a daily basis to estimate the amount 

of seasonal surface water yield produced from the ponderosa pine forest watershed for 

both cold and warm seasons. The daily precipitation simulated in the previous chapter 

and snowmelt are the main inputs for the cold-season but only the former constitutes the 

input for warm-season. Evaporation, transpiration and infiltration are considered the main 

outputs of the water balance model. Because intercepted water is eventually either 

evaporated or reaching the ground through stemflow or drip, we have not considered it in 

the water balance analysis.  

The most important biophysical characteristics that affect the amount and rate of 

water yield are described in detail using GIS. The developed GIS layers are used in 

calculating the various outputs such as evapotranspiration, infiltration and runoff and to 

show their spatial distributions. The model generated water yields are compared with 

twenty years of actual stream flow measured at the outlet of the Bar M watershed to 

verify the reliability of the model. 
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Description of Watershed Characteristics 

The spatial distribution of the static watershed characteristics are represented as 

raster layers of 90 by 90 m resolution for use in the water yield model. Figures 3-1 

through 3-4 are the grid maps of elevation, slope, aspect, and soil type of the Bar M 

watershed. The spatial distributions of elevation, slope, aspect, and soil type are 

summarized in the form of relative frequency histograms in Figures 3-5 through 3-5. 

Figure 3-5 shows that 60 percent of the area has elevations ranging from 2100 to 2300 m 

mostly located in the eastern half of the watershed (see also Figure 3-1).  

The histogram of the relative frequency distribution for slope data shows that 

more than 75 percent of the area has less than 10 percent slopes (see Figure 3-6). 

Spatially, the different slopes are fairly distributed throughout the watershed with the 

steepest slopes occurring on the sides of hills, ridges, and valleys. However, Figure 3-2 

shows the largest concentration of steep slopes occurs in the transition zone between the 

eastern and the western halves of the watershed.  
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Figure 3-1. Elevation map of the Bar M watershed.  
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Figure 3-2. Slope map of the Bar M watershed. 
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Figure 3-3 Aspect map of the Bar M watershed. 
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Analysis of the Bar M watershed aspect characteristics shown in Figure 3-7 

reveals that the majority of the watershed is facing southwest, with its east and south east 

facing surfaces contributing the least space to the total surface area of the watershed. The 

GIS map in Figure 3-3 shows the spatial distribution of the aspect of the different parts of 

the Bar M watershed area. 

  The soil types and their distributions are derived from the Coconino National 

Forest Terrestrial Ecosystem Survey (TES) data (USFS, 1992). Figures 3-4 and 3-8 

illustrate the spatial distributions of the different soil types by TES code and the 

proportion of the watershed covered by each of the soil type respectively. In addition the 

keys for the TES code are given in Table 3-2 and Appendex 3B.   Most of the soil 

textures on the Bar M watershed are of the loam or clay loam type (see Figure 3-8), and 

their depths in the watershed vary from approximately 50 to 124 centimeters (Williams 

and Anderson, 1967; USFS, 1992).    

  The values of the most important hydrologic parameters for the various TES soil 

units are given in Table 3-2. These parameters estimated from soil texture characteristics 

and used in the Green-Ampt infiltration equation. Rawls et al. (1983) and Rawls and 

Brakensiek (1985) computed the values for the effective porosity (φ ), the wetting front 

suction ( ψ ), and the hydraulic conductivity ( satK ), using soil texture samples taken 

from approximately five thousand soil horizons. The values of the hydraulic parameters 

for the TES soils calculated by Rawls et al. (1983) are consistent with the range of values 

given to these soil parameters in the Beaver Creek watershed by Williams and Anderson 

(1967). 
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Table 3-2 Estimated hydrologic soil parameters for various TES soil units. 
 

TES 
CODE    

(1) Texture (2) Depth (cm) (3) Ф(cm) (4) ψ (cm) (5) Ksat(cm/s) (6)
50 clay 98 0.385 31.63 1.66667E-05
55 loam/clay loam 124 0.409 11.28 0.000152222

520 loam 80 0.434 8.89 0.000188889
565 loam 72 0.434 8.89 0.000188889
575 loam 50 0.434 8.89 0.000188889
579 clayloam/loam 61 0.365 15.49 8.80556E-05
582 loam/clay loam 109 0.415 10.69 0.000161389
584 loam 102 0.434 8.89 0.000188889
585 loam 61 0.434 8.89 0.000188889
586 loam 72 0.434 8.89 0.000188889  
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Figure 3-4 Soil (TES) map of the Bar M watershed.  
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Figure 3-5. Relative frequency histogram of elevation. 
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Figure 3-6. Relative frequency histogram of slope. 
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Figure 3-7. Relative frequency histogram of aspect. 
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     Figure 3-8. Relative frequency histogram of soil type. 
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The GIS map of the overstory cover and stand height of Bar M watershed are 

generated from a Forest ERA GIS map database of the Western Mogollon Rim study area. 

The spatial distribution of various overstory cover density levels is illustrated in Figure 3-

10. The relative frequency distribution of the percent canopy cover density classes over 

the watershed is given in Figures 3-11. The cover density on most of the watershed 

ranges from thirty one to seventy percent. Two percent of the watershed has park-like 

openings with no overstory at all. Overall the watershed has the average canopy cover of 

forty six percent.  

Figures 3-11 and 2-12 show a spatial distribution map and the relative frequency 

distribution histogram of the stand height in Bar M watershed, respectively. The stand 

height map of the watershed revels that more than 95 percent of the stands consist of trees 

with height that range from 12 to 18 m. The average stand height in the watershed is 14 

m.  
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Figure 3-9. Overstory cover map of the Bar M watershed. 
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Figure 3-10. Relative frequency histogram of the overstory cover  
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                Figure 3-11. Stand height map of the Bar M watershed. 
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Figure 3-12. Relative frequency histogram of stand height.  
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Water Yield Model Result 

            The amount of water yield is estimated using a water balance model which takes 

the precipitation simulated in chapter two as its main input. The biophysical 

characteristics of the watershed that are important to calculate the various outputs of the 

water balance model, were discussed earlier in this chapter. Evaporation, transpiration, 

and infiltration are considered the main outputs of the water balance model for both cold 

and warm seasons.  

            We calculated the values of potential evapotranspiration using the Penman-

Monteith approach but actual evapotranspiration must be used to accurately estimate 

water yield. During the cold-season, potential evapotranspiration compares reasonably 

well with the actual one while, in the warm-season, potential evapotranspiration is much 

higher than the actual evapotranspiration. This is because potential evapotranspiration 

models represent water loss from well-watered soil conditions where there is no 

restriction on the rate of evapotranspiration from the watershed (Ward and Elliot, 1995). 

Fisher et al. (2005) estimated the potential evapotransporation from the ponderosa pine 

watersheds in the Sierra Nevada Mountains of northern California using five models that 

include the Penman-Monteith. They compared the estimated potential evapotranspiration 

with the measured values. The result found using the Penman-Monteith approach showed 

that on the average the actual evapotranspiration is equal to 80 percent of the potential. 

For our study, we multiplied the potential values by 80 percent to estimate the actual 

values. 

Since canopy interception values make up only a small portion of the amount of 

water stored in the watershed system, they are not considered in the water balance 
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analysis. This is because most of the water or snow intercepted by plants is either 

evaporated while it is in the canopy or infiltrated after it falls to the ground.  

The amount of water yield was estimated one time for each season on a daily 

basis by subtracting the outputs from the inputs of the water balance equation, and a GIS 

map was constructed to show the spatial distribution of the water yield values across the 

watershed. In addition, the efficiency of the Bar M watershed to convert precipitation into 

surface runoff was determined by comparing the simulated precipitation with the 

estimated water yield. Finally, to verify the reliability of the model, the total seasonal 

amount of the simulated water yield was compare with the average measured stream flow 

at the outlet of the watershed.  

 

Cold- season 

For the cold-season, the precipitation on the particular day, when the water 

balance is calculated, and the snowmelt from the snow in the previous days are 

considered as the inputs into the water balance models. The simulated precipitation for 

one season and the resulting amount of water yield are shown in Figures 3-13 and 3-14, 

respectively. In the figures, day zero corresponds to the day before the beginning of the 

season, September 30 and day 212 is the last day of the season, April 30. As shown in the 

figures, there are large amounts of water yield during days of high amount of 

precipitation. Runoff was observed in days right after the precipitation days due to 

snowmelt. The total seasonal amount of simulated precipitation is 472 mm while the 

amount of water yield produced from this precipitation is only 105 mm, which is 22.22 

percent of the total precipitation. On the other hand, the measured seasonal average 
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amount of cold-season stream flow is 37 percent. According to Baker (1982) the average 

amount of precipitation converted to runoff in the Beaver Creek watersheds is 22 percent 

which is similar to the results of the simulation in this research. The distribution of the 

simulated daily water yield over the season also compared well with the twenty year 

average observed one shown in Figure 3-15.  There is a difference between the water 

yields estimated using this model and the actual measured stream flow at the out let of the 

watershed. There are many factors that contribute to this discrepancy. Error in measuring 

the actual evapotranspiration accurately, lack of soil water content, and use of measured 

hydrologic variables to simulate outputs are some of the factors.   

Since the model simulates precipitation events as random, the events seem to be 

distributed evenly during the season. But in the actual case, most of the runoff producing 

cold-season precipitation events in the study area fall from December to March. Because 

of this, large amounts of runoff were measured during these months. In addition, winter 

season snow stays in the ground for many days and thus producing runoff from snowmelt 

sometimes till April and May.  

The spatial distribution of the total cold-season water yield is shown in Figure 3-

16, which seems to indicate that the runoff produced by each cell in the watershed is 

highly variable. There are many reasons for the variability in the amount of runoff such 

as density of forest, soil type, precipitation distribution, aspect, and elevation. In general, 

open areas located farther north, at higher elevation and on south facing slopes produce 

more runoff (see Figure 3-16).         
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Figure 3-13. Simulated daily precipitation vs. time for one cold-season.  
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Figure 3-14. Simulated daily water yield vs. time for one cold-season. 
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Figure 3-15. Twenty year average measured daily stream flow for the cold-season. 
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Figure 3-16. Spatial distribution of cold-season water yield in the Bar M watershed. 
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Warm- season  

Unlike the cold-season, the input into the warm-season water balance model is 

only daily precipitation.  The daily simulated precipitation amounts for one season and 

the resulting amounts of water yield are shown in Figures 3-17 and 3-18, respectively. In 

the figures, day zero corresponds to April 30, one day before the beginning of the warm-

season and day 153 is September 30, the end of the summer season. As shown in the 

figures, there was runoff produced only for four days during the entire season where there 

were larger precipitation amounts. The reason for the very small number of days with 

runoff is mainly because of the absence of days with large amounts of precipitation 

events and higher loss of water through evapotranspiration. The total simulated warm-

season precipitation amount is 226 mm while the water yield produced from this 

precipitation is 4.3 mm which is 1.9 percent of the total precipitation, while the recorded 

average seasonal amount of warm-season stream flow is 2.38 percent.  

According to Baker (1982) the average amount of precipitation converted to 

runoff in the Beaver Creek watersheds is 2 percent which approximately equal to the 

results obtained in this research.  But there is a large difference between the water yield 

estimated using this model and the actually measured stream flow at the outlet of the 

watershed.  

Warm-season precipitation is also considered and analyzed as a random process. 

Due to this, precipitation events seem to be distributed randomly through out the season 

and only precipitation events of larger magnitudes produce significant amounts of runoff. 

But in the actual case, most of the summer runoff comes mainly from the residual snow 
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melt from the previous cold season snow (see Figure 3-19). Because of this, large 

amounts of runoff in the warm-season are measured during the first months of the season.  

The spatial distribution of the total warm-season water yield is shown in Figure 3-

20, which shows that the runoff produced by each cell in the watershed is highly variable. 

There are many reasons for the variability of runoff such as density of forest, soil type, 

precipitation distribution, aspect, and elevation. In general, open areas located further 

east , at higher elevation, in south facing slopes produce more runoff than others.         
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Figure 3-17. Simulated daily precipitation vs. time for one warm-season.  
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Figure 3-18. Simulated daily water yield vs. time for one warm-season.  
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Figure 3-19. Twenty year average measured daily stream flow for the warm-season.  
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Figure 3-20. Spatial distribution of simulated warm-season water yield 
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                                      Summary and conclusions 

Deterministic daily water yield models are developed for cold and warm seasons 

for use on an upland ponderosa pine type watershed in north-central Arizona. The models 

use a GIS software to illustrate the spatial distribution of watershed characteristics. The 

use of GIS enables description of the study watershed as a grid composed of thousands of 

microwatersheds, or cells. Watershed characteristics, such as elevation, slope, aspect, soil 

type, and canopy cover, are defined for each individual cell and each characteristic is 

assumed to be spatially homogeneous across a cell.  

A water balance approach is used to determine the water yield and to account for 

the inputs, outputs, and changes in soil storage of water in each cell. The most important 

hydrological processes considered in developing the model are canopy interception, 

evaporation, transpiration, infiltration and snow accumulation and melt. Various reliable 

equations were tested and used by others to determine these processes. The amount of 

water yield generated from the entire watershed is determined by first computing the 

runoff for each cell on a daily basis. Then the runoff from each cell is routed downstream 

in a cascading fashion until it reaches the watershed outlet. Finally, the daily runoffs 

produced from each cell are summed over the entire cold and warm-seasons to determine 

the total seasonal amount of water yield in each season from the watershed. 

Though the models enable us estimate the amounts of water yield reasonable well, 

they have some problems. One of the main problems of the models is length of time 

required to run the models. The reasons for the long time requirement are first the water 

yield is synthetically generated at the cell level and there are thousands of cells in the 

watershed, second the models require estimation of the various input and output 
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components of the water balance model individually, and their spatial description of the 

various watershed, climatic, and hydrologic characteristics involved in the water yield 

estimation.  

The second problem in this modeling process is availability of data. For example 

solar radiation data are found by taking the average daily amount that was collected for 

two years near the study area. The solar radiation in a particular day is then estimated by 

taking the two year average amount for that day. This results in underestimating the 

amount of insolation during clear sky days, while over estimating the amount of 

insolation on wet and cloudy days. The soil moisture data consists of the nine month data 

collected by the School of Forestry in the Centennial Forest, near Flagstaff and 

differentiating values for wet and dry days was not easy. Some constant parameters used 

to calculate the various outputs component of the water balance model are adopted from 

other books and research papers. 

In a forested watershed system, evapotranspiration is one of the main components 

of a water balance model. Hence, proper assessment of both evaporation and transpiration 

is important to accurately estimate the water yield. In this study, The potential 

evapotranspiration from the watershed was calculated using the Penman-Monteith 

equation and multiplied the result by 0.8 to estimate the actual evapotranspiration from 

the watershed. But the ratio of the actual to the potential evapotranspiration is variable 

form day to day depending on the moisture, temperature and other climatic conditions. 

Hence, there should be some way to accurately estimate the actual evapoteanspiration in 

order to get better water yield values.  
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Also estimation of water yield on a daily basis has some problems related to 

estimating the daily values of the inputs and outputs of the models and these problems are 

prominent in the warm-season water yield. The input, in this case the precipitation occurs 

within a short time period while the movement of the water produced from the system 

takes a much longer time through evaporation, transpiration, infiltration, and runoff. For 

example, if the rain falls at 5 pm., the output from that day should be only all the losses 

that occure after 5 pm. However, in this modeling all the losses before and after 5 pm. are 

considered as the losses for that day. This underestimates the water yield by deducting 

outputs from non existing input.  

Generally the amount of water yield from a watershed in a particular season is 

affected by the climatic conditions in the previous seasons. This model, however, 

estimates the seasonal water yield independent from conditions in previous seasons. This 

should be acceptable because there are permanent flows in the study area.  

Though the study examines the ability of the models to predict the total amount of 

cold and warm-seasons water yield at the watershed outlet, the problem of model 

performance on a daily basis is not yet fully explored. Because the different model 

components are difficult to test on a daily basis due to lack of data availability such as 

daily soil moisture content, snowpack depth and evapotranspiration. Furthermore, 

complete verification of the spatial distribution of the model generated results are 

difficult because of lack of adequate spatial data such as soil moisture, radiation, 

vegetation characteristics.  

Overall, this study has resulted in a physically-based and spatially-varied, water 

yield model that accounts for the majority hydrologic processes involved in estimating 
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the amount of water yield from an upland ponderosa pine type watershed with out being 

over complex. However, there still remains some work that needs to be done as described 

above before the water yield model developed in this study can be made fully operational.  
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Appendix 3A 

Description of Climate-Related Information 

When daily temperature data is available in the form of daily maximum and daily 

minimum temperatures, average daytime and night time temperatures can be estimated by 

assuming that the change in temperature throughout a 24-hour period can be described by 

a sine function (Parton and Logan, 1981; Running et al., 1987). After integrating over 

daytime portion of the sine curve, the resulting equation for estimating the average 

daytime temperature according to Running et al., (1987) is  

 

             minmax 39.0606.0 TTTdavg +=                                                                             (3A-1) 

 

Where  davgT = average daytime temperature (o C), 

             maxT = daily maximum temperature (o C), and  

            minT = daily minimum temperature (o C) 

The average nighttime temperature is estimated by 

 

 minmax 697.0303.0 TTTnavg +=                                                                           (3A-2) 

 

Where navgT  is the average nighttime temperature in o C (Running et al., 1987). 

Atmospheric pressure at any elevation is determined as a function of the air temperature 

and the air pressure measured at a reference elevation and assumes that air temperature 
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changes linearly with elevation. According to Wallace and Hobbes (1977) the equation 

used for computing atmospheric pressure is 

 

Γ−−Γ+= Rg
oooo TZZTPP /}/)]({[                                                                    (3A-3) 

 

Where P = atmospheric pressure (mb),  

oP  = atmospheric pressure at reference elevation (mb),  

oT = air temperature at a reference elevation (oK)  

 Γ = lapse rate (oK m-1) 

Z  = elevation (m), 

oZ = reference elevation (m), 

 g  = gravitational acceleration (m s-1), and 

R = gas constant for air (J o K-1 Kg-1). 

The gravitational acceleration ( g ) is assumed constant at 9.807 m s-1 and the gas 

constant for air ( R ), though a function of the amount of water vapor in the air, is set 

constant at 288 J oK-1 Kg-1. The reference elevation ( oZ ) is set 2132.38 m, which is the 

elevation of the Flagstaff WSO. The daily average pressure at Flagstaff is used as the 

pressure at the reference elevation. ( oP ). Different lapse rates are used for different 

months, but within months the lapse rate (Γ ) is assumed not to change.  

 

Vapor pressure  

According to Dingman (1994), the saturation vapor pressure can be estimated by  
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              )]2.237/(3.17exp[11.6 += aas TTe                                                                 (3A-4) 

   

Where se  is saturation vapor pressure (mb), and aT  is air temperature (oC). The vapor 

pressure deficit ( e∆ ), is determined by first calculating the actual vapor pressure deficit 

which is  

  

                      )(RHee sa =                                                                                            (3A-5) 

 

Where RH  is the average daily relative humidity determined from the existing data in the 

Beaver Creek. Then the vapor pressure deficit is simply the saturated vapor pressure 

minus the actual vapor pressure which is 

 

                       as eee −=∆                                                                                            (3A-6) 

 

The equation for converting vapor pressure deficit ( e∆ ) to absolute humidity deficit 

( vρ∆ ) is  

 

                   av Te /217∆=∆ρ                                                                                        (3A-7) 

  

Where  vρ∆  has units of gm-3 (Dingman, 1994). 
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Slope of Saturation vapor pressure vs. temperature 

The slope of the relationship between saturation vapor pressure and temperature is 

calculated by taking the derivative of the equation for saturation vapor pressure, equation 

(3A-4), with respect to temperature. The resulting equation is (3A-8) 

 

         )]3.2373.17exp[
)3.237(

25083
2 +

+
==∆ a

aa

s T
TdT

de
                                                   (3A-8) 

 

Where ∆  is in mb oC-1 (Dingman, 1994). 

 

Air density 

Air density is a function of the prevailing air temperature, air pressure (Hodgman et al., 

1958). The equation for air density is 

 

)]2.273/()3783.0[(104853.3 4 +−= −
aa TePXρ                                               (3A-9) 

 

Where aρ  is the air density in g cm-3 and the other terms are as described above 

(Hodgman et al., 1958). 

 

Latent heat of vaporization  

The latent heat of vaporization ( vλ ) is calculated by 

           av T564.3.597 −=λ                                                                              (3A-10) 

Where vλ  is in cal g-1 (Dingman, 1994). 
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Psychrometric constant 

The psychrometric constant (γ ) is defined as  

 

       
v

a PC
λ

γ
622.0

=                                                                                             (3A-11) 

 

Where γ  has units of mb oC-1 and aC , the heat capacity of air, equals 0.24 cal g-1 oC-1 

(Dingman, 1994). 
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Appendix 3B 
 
 

Description of TES soil types (USFS, 1992) 
 
 

TES 
code sub unit soil name  

soil texture 
class 

% 
composition

Vertic Haplaquolls 50 
0.1 Fine, Montmorillonitic clay 100 

Pachick Argiborolls 
0.1 Fine, Montmorillonitic Loam 65 

Vertic Argiborolls 
0.2 Fine, Montmorillonitic Clay loam 20 

Typic Argiborolls 
0.5 Fine, Montmorillonitic Loam 10 

Typic Argiborolls 

55 

0.6 Clayey-skeletal, montmorillonitic Loam 5 
Udic Haplustalfs 

0.1 Fine, Montmorillonitic Loam 60 
Lithic Haplustalfs 

0.2 Clayey-skeletal, montmorillonitic Loam 30 
Udic Haplustalfs 

0.5 Clayey-skeletal, montmorillonitic Loam 5 
Udic Argiborolls 

520 

0.6 Fine, Montmorillonitic Loam 5 
Mollic Eutroboralfs 

0.1 Clayey-skeletal, mixed Loam 70 
Mollic Eutroboralfs 

0.5 Loamy-skeletal, mixed Loam 15 
Lithic Eutroboralfs 

565 

0.6 Clayey-skeletal, mixed Loam 15 
0.1 Mollic Eutroboralfs Loam 40 
0.2 Lithic Eutroboralfs Loam 40 

575 

0.3 Rock outcrop Loam 20 
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         Continued��.. 
 

Lithic Eutroboralfs 
0.1 Clayey-skeletal, montmorillonitic Loam 45 

Mollic Eutroboralfs 
0.2 Fine, Montmorillonitic Clay loam 35 

Typic Argiborolls 
0.5 Fine, Montmorillonitic Clay loam 10 

Lithic Eutroboralfs 

579 

0.6 Clayey, montmorillonitic Clay loam 10 
Typic Argiborolls 

0.1 Fine, Montmorillonitic Loam 65 
Mollic Eutroboralfs 

0.2 Clayey-skeletal, montmorillonitic Loam 20 
Typic Argiborolls 

0.5 Clayey-skeletal, montmorillonitic Clay loam 5 
Mollic Eutroboralfs 

582 

0.6 Fine, Montmorillonitic Clay loam 10 
Mollic Eutroboralfs 

0.1 Clayey-skeletal, montmorillonitic Loam 40 
Typic Argiborolls 

0.2 Fine, Montmorillonitic Loam 35 
Mollic Eutroboralfs 

0.5 Fine, Montmorillonitic Loam 15 
Typic Argiborolls 

584 

0.6 Clayey-skeletal, montmorillonitic Loam 10 
Lithic Eutroboralfs 

0.1 Clayey-skeletal, montmorillonitic Loam 40 
Mollic Eutroboralfs 

0.2 Fine, Montmorillonitic Loam 30 
Lithic Eutroboralfs 

0.5 Clayey-skeletal, montmorillonitic Loam 15 
Mollic Eutroboralfs 

585 

0.6 Clayey-skeletal, montmorillonitic Loam 15 
Mollic Eutroboralfs 

0.1 Fine, Montmorillonitic Loam 45 
Mollic Eutroboralfs 

0.2 Clayey-skeletal, montmorillonitic Loam 40 

586 

0.5 Lithic Eutroboralfs Loam 15 
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Chapter 4 

Summary, conclusions and recommendations 

Summary  

The main objective of this study is to develop a model to estimate water yield 

from a ponderosa pine watershed in north-central Arizona by incorporating the various 

hydrologic processes and spatial watershed characteristics. Previous studies in this area 

considered the cold-season precipitation as the only source of runoff (Brown et al., 1974; 

Baker, 1982; Tecle and Rupp, 2002). Though the contribution of warm-season 

precipitation and water yield is minimal, they are estimated separately in this study. 

Hence, to achieve our objective, the modeling process in this study is pursued in two 

parts. The first part consists of developing an event-based, stochastic model to describe 

and simulate the cold and warm-season precipitation characteristics in the study area. In 

the second part, daily water yield models are developed for the cold and warm-seasons 

separately that consider the temporal and spatial distribution of precipitation depth and 

other important watershed characteristics such as elevation, aspect, slope, overstory 

density, and soil. 

 In the first part of the study, the characteristics of precipitation events are 

considered as random and time variant variables and modeled using stochastic processes. 

The probability distributions of the specific precipitation characteristics, such as event 

depth, event duration, and interarrival time between events, are described using 

appropriate theoretical distribution functions that best fit the observed data. In addition, 

temperatures are described and simulated as stochastic processes to account for their 

uncertain variability throughout the two seasons. The simulated temperature values are 
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used to determine the form of precipitation during the cold-season. The precipitation may 

come in the form of rain, snow, or mixed, and used as an input variable to calculate water 

yield using the water balance models. The components of the water yield model are 

precipitation, evaporation, transpiration, and infiltration, and all of them are estimated in 

this study. 

Conclusions   

 The precipitation models for both seasons perform well except that the cold-

season precipitation model over-estimates the depth and duration of small precipitation 

events while the warm season precipitation model over-estimates the total seasonal 

precipitation amount. These may be due to the lack of best fit theoretical distribution 

functions to describe the precipitation characteristics in the study area. None of the 

theoretical distribution functions selected ware able to describe the precipitation 

characteristics well except time between sequences in the cold-season. Since there are 

inadequate observed data (20 years), it may be s difficult to correctly portray the temporal 

trend of the precipitation characteristics. In the future, acquiring additional data would be 

necessary to describe the characteristics well. 

Another problem of with the stochastic precipitation modeling is simulating the 

arrival of events randomly throughout the seasons. However, in the study area, most cold-

season precipitation events fall between December and March and the warm-season 

precipitation events fall between July-September. Due to random behavior of the model 

generated data, we may have larger or smaller number of precipitation events during the 

drier periods of the seasons and less or more number of events in the wet periods of the 

seasons. So we have to have many trials to see the validity of the models. 
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 The spatial analysis of the precipitation events reveals that the variability of c                                

old and warm seasons� precipitation depths and durations in the study area are partially 

explained by elevation, latitude, and longitude though the influence of aspect seems to be 

small when dealing with small are at the watershed scale. Four regression equations are 

developed in describing the spatial distribution of precipitation depth and duration. The 

cold-season precipitation depth is explained by only the latitude (UTM-Y) with a 

regression equation having an r2 value of 0.74 while event duration is influenced by both 

elevation and latitude with an r2 value of  0.66. In the warm-season, the distribution of 

precipitation depth is affected by latitude, longitude and elevation, while the duration of 

precipitation events is influenced by longitude and elevation. The warm-season 

regression equations for precipitation depth and duration have values r2 values of 0.45 

and 0.55 respectively. In all the regression equations the r2 values are low which show 

that significant portions of the spatial variability of precipitation depth and duration in the 

watershed are unexplained.   

The spatial distribution of the precipitation in north-central Arizona is highly 

influenced by orographic features such as the San Francisco Mountains, the Mogollon 

Rim and the White Mountains (Beschta, 1976; Tecle and Rupp, 2002). Since the 

precipitation gauges used to analyze the spatial distribution are located within a small 

area and far from these landscape features, care must be taken when applying the finding 

of the spatial analysis to sites outside the study watershed. The spatial factors controlling 

the areal distribution of precipitation on watersheds on these landscape features may be 

different from those on the Bar M watershed.  
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Overall, the cold and warm-season precipitation models presented in this study 

are useful tools for describing the seasonal precipitation patterns that occur over a 

mountainous ponderosa pine forested watersheds. In addition they serve to provide the 

precipitation and temperature inputs into the water balance models used to estimate water 

yield from upland forested watersheds of the type considered in this study.         

The second part of the study, developed a precipitation event-based runoff model 

for estimating water yield for the cold and warm-seasons in the ponderosa pine forested 

watersheds of north-central Arizona. A GIS is used as a part of the modeling scheme to 

describe the spatial characteristics of the watershed. The GIS software enables to 

subdivide the watershed into thousands of cells or microwatersheds each having 

relatively the same (or homogeneous) spatial characteristics. These characteristics are 

elevation, slope, aspect, soil type, and canopy cover, and all of which are defined for each 

cell. The water yield from each cell is then estimated using a water balance model 

developed specifically for each season. The most important hydrological processes 

involved in developing the models are canopy interception, evaporation, transpiration, 

snow accumulation and melt, infiltration, and change in storage. The models use the 

simulated precipitation in the previous chapter as their primary input and the values of the 

output variables used are estimated using various empirical equations, which have been 

tested and used by others (Wigmosta, et al., 1994; Dingman, 1994). 

The amount of water yield generated from the entire watershed is determined by 

first computing the runoff for each cell from each precipitation event. Then the runoff 

from each cell is routed to the adjacent downstream cell in a cascading fashion until it 

reaches the watershed outlet. Finally, the event-based runoffs produced are summed over 



 179

the entire cold and warm-seasons to determine the total seasonal amounts of water yield 

from the entire watershed.  

The results of the total seasonal water yield for the cold and the warm-seasons are 

22 and 1.9 percent of their respective total seasonal amount of precipitation. However, 

the recorded stream flow data measured at the outlet of the watershed shows 37 and 2.3 

percent of the recorded seasonal precipitation becoming runoff during the cold and warm 

seasons respectively. The most probable reasons for the major discrepancies in the cold-

season results may be overestimation of the losses due to evaporation and transpiration, 

and possible errors in estimating soil water storage due to inadequate data. Other 

weakness in this modeling approach is the randomness of the precipitation events and 

inability to find a perfect theoretical distribution function to describe the data correctly. 

 

Recommendations 

Future work on water yield models should include developing them to provide 

better hydrologic responses to climatic and biotic changes. In addition, there should be 

some modification to reduce the time required to run the models, in order to make it a 

practical tool for watershed management purposes. Also since the models in this study 

are realistic that are based on actual data, efforts should be in the future to collect 

adequate data on all variables including solar radiation, soil moisture, and snow pack 

depth to make the model results more reliable.  

Overall, this research is able to simulate precipitation events through the 

stochastic event-based approaches. Furthermore, it develops a spatially-varied physically-

based water yield models that account for the major hydrologic processes and watershed 



 180

characteristics that affect the amount of runoff.  This is quite useful to estimate runoff and 

water yield from area which receive intermittent and spatially varied precipitation events 

such as the study area. 
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